クルルの高度定理の「逆|

2025年11月7日23時52分更新

クルルの高度定理と呼ばれる有名な定理がある。

定理1 R をネーター環とし、r 個の R の元 $a_1, ..., a_r$ で生成されるイデアルを $(a_1, ..., a_r)$ とする。このとき $(a_1, ..., a_r)$ に属す極小素イデアルの高さはr 以下である。この定理の逆のようなものもある。

定理 2 R をネーター環とし、その素イデアル \mathfrak{p} を一つ取る。定理 1 から \mathfrak{p} の高さは有限 である。 \mathfrak{p} の高さを r と置く。このとき \mathfrak{p} が $(a_1, ..., a_r)$ に属す極小素イデアルであるような r 個の元 $a_1, ..., a_r$ が存在する。

証明 rに関する帰納法で示す。r=0のとき p は零イデアルに属す極小素イデアルであるから主張が成り立つ。r>0のときを考える。R がネーターであるから, $p=(p_1,\dots,p_m)$ と表せる。 $\{\mathfrak{q}\in \mathrm{Spec}\,R:\mathfrak{q}\subsetneq \mathfrak{p}\}$ をS と置くとき,勝手なSの元 \mathfrak{q} に対して $p_i\notin \mathfrak{q}$ となる番号 i がある。なんとなれば,このような番号が無かったとし, $p_i\in \mathfrak{q}_i\in S$ なる \mathfrak{q}_i を各番号で取ると, $\mathfrak{p}\subset\bigcup_{i=1}^m\mathfrak{q}_i$ となるので,素イデアル回避よりある番号について $\mathfrak{p}\subset\mathfrak{q}_i$ である。これは $\mathfrak{q}_i\subsetneq \mathfrak{p}$ であることに反する。この条件を満足する番号 i を取り p_i を a_r と置く。S の中から高さr-1 の素イデアル \mathfrak{q} を取ると,帰納法の仮定から \mathfrak{q} が (a_1,\dots,a_{r-1}) に属す極小素イデアルであるような r-1 個の元 a_1,\dots,a_{r-1} を取れる。すると \mathfrak{p} に狭義に包含される素イデアルに a_r が属さないので, \mathfrak{p} は (a_1,\dots,a_r) に属す極小素イデアルである。

証明終