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本文書では，小行列式の等式であるプリュッカー関係式を示すことを目標にして，グラ
スマン多様体と旗多様体について論じる。

𝐾 を無限体とし，その非零元がなす乗法群を 𝐾× で表す。𝐾 線型空間 𝑉 に対して，そ
の双対空間を 𝑉 ∗ で表し，双対対 ⟨⋅，⋅⟩ ∶ 𝑉 × 𝑉 ∗ → 𝐾を備えておく。

1 射影多様体

まずは集合としてのグラスマン多様体および射影空間を定めることから始める。
定義 1 (集合としてのグラスマン多様体)　 𝐸 を有限次元 𝐾 線型空間とし，その次元を 𝑚
と置く。
(1) 𝑚以下の正整数 𝑟に対して，集合

{ 𝑉 ∶ 𝑉は 𝐸の 𝑟次元部分空間である }

Gr𝑟(𝐸)で表し，グラスマン多様体と呼ぶ。Gr𝑟(𝐸)の元を Gr𝑟(𝐸)の点と呼ぶ。
(2) Gr1(𝐸)を特に ℙ(𝐸)で表し，𝐸の射影空間と呼ぶ。
(3) 𝜆 ⋅ (𝑥1，…，𝑥𝑚) = (𝜆𝑥1，…，𝜆𝑥𝑚)で 𝐾𝑚 ∖ {𝟎}の 𝐾× による群作用を定め，その剰余
集合を ℙ𝑚

𝐾 で表し，𝑚次元の射影空間と呼ぶ。(𝑥1，…，𝑥𝑚)の剰余類を [𝑥1 ∶ ⋯ ∶ 𝑥𝑚]
で表し，ℙ𝑚

𝐾 の点と呼ぶ。
観察 2 (斉次座標について)　 𝐸の基底 𝑒1，…，𝑒𝑚 を取って，点 𝐿 ∈ ℙ(𝐸)の生成元の係数を
考えると，

{ (𝑥1，…，𝑥𝑚) ∶ 𝐿 = Span𝐾(𝑥1𝑒1 + ⋯ 𝑥𝑚𝑒𝑚) } = [𝑥1 ∶ ⋯ ∶ 𝑥𝑚]

となるので，ℙ𝑚
𝐾 の点を定める。この点を 𝐿の斉次座標と呼ぶ。逆に ℙ𝑚

𝐾 の点 [𝑥1 ∶ ⋯ ∶ 𝑥𝑚]
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が ℙ(𝐸) の点 Span𝐾(𝑥1𝑒1 + ⋯ + 𝑥𝑚𝑒𝑚) ⊂ 𝐸 を定めるので，𝑒1，…，𝑒𝑚 が全単射写像
ℙ(𝐸) → ℙ𝑚

𝐾 を誘導することがわかる。
次に集合として定義した ℙ(𝐸) に，代数的集合の構造を入れる。そのために基本となる

のは次の補題である。
補題 3 (テンソル積と双対空間の可換性)　 𝑛 を非負整数に対して，以下で構成する線型
写像

(𝐸∗)⊗𝑛 → (𝐸⊗𝑛)∗；𝑣1 ⊗ ⋯ ⊗ 𝑣𝑛 ↦ 𝑣1 ⊗ ⋯ ⊗ 𝑣𝑛(⋅)

は同型である。
構成　𝑛個のベクトル 𝑣1，…，𝑣𝑛 ∈ 𝐸∗ が定める 𝐸𝑛 上の関数

(𝑤1，…，𝑤𝑛) ↦ 𝑣1(𝑤1) ⋯ 𝑣𝑛(𝑤𝑛)

が 𝑛 重線型であるから，(𝐸⊗𝑛)∗ の元 𝑣1 ⊗ ⋯ ⊗ 𝑣𝑛(⋅) を定める（図 1 左図）。関係
(𝑣1，…，𝑣𝑛) ↦ 𝑣1 ⊗ ⋯ ⊗ 𝑣𝑛(⋅)は 𝑛重線型であるから，線型写像 (𝐸∗)⊗𝑛 → (𝐸⊗𝑛)∗ が誘導さ
れる（図 1右図）。

(𝑤1，…，𝑤𝑛) 𝐸𝑛 𝐸⊗𝑛

𝑣1(𝑤1) ⋯ 𝑣𝑛(𝑤𝑛) 𝐾

∈

𝑣1⊗⋯⊗𝑣𝑛(⋅)

∈

(𝑣1，…，𝑣𝑛) (𝐸∗)𝑛 (𝐸∗)⊗𝑛

𝑣1 ⊗ ⋯ ⊗ 𝑣𝑛(⋅) (𝐸⊗𝑛)∗

∈

∈

図 1 線型汎関数のテンソル積（左図）と目的の写像の誘導（右図）

証明　 𝐸の基底 𝑒1，…，𝑒𝑚を取って，𝐸∗の双対基底 𝑒∗
1，…，𝑒∗

𝑚を取る。すると { 𝑒∗
𝑖1⊗⋯⊗𝑒∗

𝑖𝑛 ∶
1 ≦ 𝑖1，…，𝑖𝑛 ≦ 𝑚 }が (𝐸∗)⊗𝑛 の基底で，構成より 𝑒∗

𝑖1 ⊗ ⋯ ⊗ 𝑒∗
𝑖𝑛(⋅) = (𝑒𝑖1 ⊗ ⋯ ⊗ 𝑒𝑖𝑛)∗ であ

るので，(𝐸∗)⊗𝑛 の基底が (𝐸⊗𝑛)∗ の基底に写ることがわかり，件の写像が同型であること
が示された。 証明終　

𝑆•(𝐸∗) = ⨁∞
𝑛=0 𝑆𝑛(𝐸∗)を 𝐸∗ の対称代数とし，次のようにして 𝑆•(𝐸∗)を 𝐸上の 𝐾値

関数がなす環ℱ(𝐸, 𝐾)に埋め込む。補題 3を用いて元 𝑓 ∈ (𝐸∗)⊗𝑛 を (𝐸⊗𝑛)∗ の元と考え，
関数

𝑓(⋅) ∶ 𝐸 → 𝐾；𝑤 ↦ ⟨𝑤 ⊗ ⋯ ⊗ 𝑤，𝑓⟩

を対応させると，線型写像 (𝐸∗)⊗𝑛 → ℱ(𝐸，𝐾) が得られ，テンソル代数 𝑇 •(𝐸∗) =
⨁∞

𝑛=0(𝐸∗)⊗𝑛 からの環準同型 𝑇 •(𝐸∗) → ℱ(𝐸，𝐾)に拡張できる。この準同型によって，勝
手なベクトル 𝑣1，𝑣2 ∈ 𝐸∗ に対して 𝑣1 ⊗ 𝑣2 − 𝑣2 ⊗ 𝑣1 が零に写るので，対称代数からの環
準同型 𝑆•(𝐸∗) → ℱ(𝐸，𝐾)が誘導される。この環準同型の単射性は補題として扱うことに
する。
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補題 4　 𝑆•(𝐸∗) → ℱ(𝐸，𝐾)；𝑣1 ⋯ 𝑣𝑛 ↦ 𝑣1 ⋯ 𝑣𝑛(⋅)は環同型である。

証明　 𝐸の基底 𝑒1，…，𝑒𝑚 を固定し，𝐸∗ の双対基底 𝑒∗
1，…，𝑒∗

𝑚 を取る。𝑒1，…，𝑒𝑚 によって
環同型ℱ(𝐸，𝐾) → ℱ(𝐾𝑚，𝐾)が得られ，𝑋1，…，𝑋𝑚を不定元とすると，関係𝑋𝑖 ↦ 𝑒∗

𝑖 によっ
て環同型 𝐾[𝑋1，…，𝑋𝑚] → 𝑆•(𝐸∗)が得られる。すると合成 𝐾[𝑋1，…，𝑋𝑚] → ℱ(𝐾𝑚，𝐾)
は多項式を多項式写像に写す写像で，これが単射であることを示せばよい。
この写像の単射性を 𝑚 に関する帰納法で示す。𝑚 = 1 のとき，多項式写像が

零であることは，一変数多項式が無限個の解を持つことを意味するので，もと
の多項式も零で，件の写像は零である。𝑚 > 1 とし，𝐾[𝑋1，…，𝑋𝑚−1][𝑋𝑚] と考
える。この多項式環の元 𝑓 = ∑∞

𝑖=0 𝑔𝑖𝑋𝑖
𝑚（𝑔𝑖 ∈ 𝐾[𝑋1，…，𝑋𝑚−1]）を取り，多項式

関数として零であると仮定する。𝐾 値ベクトル (𝑥1，…，𝑥𝑚−1) を勝手に取ると，
𝑓(𝑥1，…，𝑥𝑚−1，𝑋𝑚) = ∑∞

𝑖=0 𝑔𝑖(𝑥1，…，𝑥𝑚−1)𝑋𝑖
𝑚 は無限個の解を持つ一変数多項式環であ

るので，すべての 𝑖について 𝑔𝑖(𝑥1，…，𝑥𝑚−1) = 0である。(𝑥1，…，𝑥𝑚−1)を勝手に取って
いたので，帰納法の仮定により 𝑔𝑖 = 0となり，𝑓 = 0であることも従うので，件の写像が
単射であることが示された。 証明終　

観察 5　斉次元 𝑓 ∈ 𝑆𝑛(𝐸∗)と，点 𝐿 ∈ ℙ(𝐸)を考える。ベクトル 𝑣(𝑖)
1 ，…，𝑣(𝑖)

𝑛 ∈ 𝐸∗ を用い
て 𝑓 = ∑𝑘

𝑖=1 𝑣(𝑖)
1 ⋯ 𝑣(𝑖)

𝑛 と表し，点 𝑤0 ∈ 𝐿 ∖ {0}を一つ固定して 𝑓に代入すると，

𝑓(𝑤0) =
𝑘

∑
𝑖=1

𝑣(𝑖)
1 (𝑤0) ⋯ 𝑣(𝑖)

𝑛 (𝑤0)

と書ける。他の点 𝑤 ∈ 𝐿 ∖ {0}を勝手に取ると，元 𝜆 ∈ 𝐾× を用いて 𝑤 = 𝜆𝑤0 と表せるの
で，𝑓に代入すると

𝑓(𝑤) =
𝑘

∑
𝑖=1

𝑣(𝑖)
1 (𝜆𝑤0) ⋯ 𝑣(𝑖)

𝑛 (𝜆𝑤0) =
𝑘

∑
𝑖=1

𝜆𝑛𝑣(𝑖)
1 (𝑤0) ⋯ 𝑣(𝑖)

𝑛 (𝑤0) = 𝜆𝑛𝑓(𝑤0)

となる。特に 𝐸 の基底 𝑒1，…，𝑒𝑚 とその双対基底 𝑒∗
1，…，𝑒∗

𝑚 を取って，𝑒∗
1，…，𝑒∗

𝑚 に
対応する 𝑆•(𝐸∗) の元を 𝑋1，…，𝑋𝑚 と書くと，この基底に関する 𝐿 の斉次座標が
[𝑋1(𝑤) ∶ ⋯ ∶ 𝑋𝑚(𝑤)]で与えられる。このような観点から，𝑆•(𝐸∗)を ℙ(𝐸)の斉次座標環
と呼ぶ。
以上で ℙ(𝐸)に代数的集合の構造を入れる準備が整った。

定義 6 (射影空間の代数的集合)　 𝑆•(𝐸∗)の元 𝑓と，𝑆•(𝐸∗)の部分集合 𝑆と，ℙ(𝐸)の部分
集合 𝑉を取る。
(1) 点 𝐿 ∈ ℙ(𝐸)が 𝑓の零点であるとは，𝐿 ∖ {0}の勝手な元 𝑤に対して 𝑓(𝑤) = 0が成
立するときをいう。
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(2) ℙ(𝐸)の部分集合 𝑉 (𝑆)を，

{ 𝐿 ∈ ℙ(𝐸) ∶勝手な元 𝑓 ∈ 𝑆に対して，𝐿が 𝑓の零点である }

として定め，この形の部分集合を ℙ(𝐸)の（射影）代数的集合と呼ぶ。
(3) 𝑆•(𝐸∗)の部分集合 𝐼(𝑉 )を，

{ 𝑓 ∈ 𝑆•(𝐸∗) ∶ 𝑓は，𝑉のすべての点を零点として持つ }

として定めると，これは斉次イデアルで，𝑉のイデアルと呼ぶ。
(4) 代数的集合 𝑉 (𝑆) が，𝑉 (𝑆) とは異なる代数的集合 𝑉 (𝑆1) と 𝑉 (𝑆2) の和集合

𝑉 (𝑆1) ∪ 𝑉 (𝑆2) と等しいとき，可約であるといい，そうでないとき既約であるとい
う。既約な代数的集合を特に射影多様体と呼ぶ。射影多様体のイデアルは素イデア
ルである。

ここで零点定理も述べておく。
定理 7 (射影的零点定理)　 𝐾 を代数閉体とする。𝑆•(𝐸∗) の斉次イデアル 𝐼 に対して次の
二つが成立する。
(1) 𝑉 (𝐼) = ∅となるのは，⨁∞

𝑛=𝑁 𝑆•(𝐸∗) ⊂ 𝐼を満足する整数 𝑁が存在するとき，かつ
そのときに限る。

(2) 𝑉 (𝐼) ≠ ∅であれば，𝐼(𝑉 (𝐼)) = √𝐼が成立する。ここで √𝐼は 𝐼の根基イデアルを
表す。

系 8 (対応定理)　 𝐾を代数閉体とし，⨁∞
𝑛=1 𝑆•(𝐸∗)を 𝑆+ と置く。このとき関係 𝐼 ↦ 𝑉 (𝐼)

が全単射写像
(1.1)

{ 𝐼 ∶ 𝐼は 𝑆•(𝐸∗)の根基斉次イデアルで，𝐼 ≠ 𝑆+ } → { 𝑉 ∶ 𝑉は ℙ(𝐸)の代数的集合 }

を定める。

証明　関係 𝑉 ↦ 𝐼(𝑉 ) が逆写像を定めることを示せばよい。勝手な代数的集合 𝑉 に対
して 𝑉 (𝐼(𝑉 )) = 𝑉 が成立することは定義から直ちに従う。(1.1) の左の集合に属すイデ
アル 𝐼を勝手に取る。勝手な正整数 𝑁に対して√⨁∞

𝑛=𝑁 𝑆•(𝐸∗) = 𝑆+ が成立するので，
𝑉 (𝐼) = ∅を満足する 𝐼は，定理 7 (1)より 𝑆•(𝐸∗)と等しく，

𝐼(𝑉 (𝐼)) = 𝐼(∅) = 𝑆•(𝐸∗) = 𝐼

となる。𝑉 (𝐼) ≠ ∅を満足する 𝐼に対しては，定理 7 (2)より 𝐼(𝑉 (𝐼)) = 𝐼が成立し，件の
関係が互いに逆となる写像を定めることが示された。 証明終　
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これから行うことは，グラスマン多様体を高次元の射影空間に射影多様体として埋め込
むことである。

2 プリュッカー埋め込み

定義 9 (プリュッカー埋め込み)　 𝑟 を 𝑚 以下の正整数とする。点 𝑉 ∈ Gr𝑟(𝐸) に対し
て，包含写像 𝑉 ↪ 𝐸 を取ると，𝑟 次外冪 ⋀𝑟 𝑉 は一次元であるから，零でない線型写像
⋀𝑟 𝑉 ↪ ⋀𝑟 𝐸；𝑤1 ∧ ⋯ ∧ 𝑤𝑟 ↦ 𝑤1 ∧ ⋯ ∧ 𝑤𝑟 が単射である。この写像による像を 𝜄(𝑉 )で
表すと，𝜄(𝑉 )は ℙ(𝐸)の点であり，写像 𝜄 ∶ Gr𝑟(𝐸) → ℙ( ⋀𝑟 𝐸)が定まる。この写像 𝜄をプ
リュッカー埋め込みと呼ぶ。
観察 10 (プリュッカー座標)　 𝐸 の基底 𝑒1，…，𝑒𝑚 を取ると，辞書式順序で並べたベクト
ル (𝑒𝑖1 ∧ ⋯ ∧ 𝑒𝑖𝑟 ∶ 1 ≦ 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑟 ≦ 𝑚)が ⋀𝑟 𝐸の基底である。{1，…，𝑚}を [𝑚]，
𝑟個の元からなる部分集合すべてを ([𝑚]

𝑟 )で表すことにする。𝐼 = {𝑖1 < ⋯ < 𝑖𝑟}として
𝑒𝑖1 ∧ ⋯ ∧ 𝑒𝑖𝑟 を 𝑒𝐼 で表すことにすれば，基底は (𝑒𝐼 ∶ 𝐼 ∈ ([𝑚]

𝑟 ) )と表せる。点 𝑉 ∈ Gr𝑟(𝐸)に
対して 𝑉 の基底 𝑤1，…，𝑤𝑟 を取って，その表現行列を考えると，(𝑚，𝑟) 型の行列 𝐴 を用
いて

(𝑤1 ⋯ 𝑤𝑟) = (𝑒1 ⋯ 𝑒𝑚)𝐴

と表せる。元 𝐼 ∈ ([𝑚]
𝑟 ) に対して，𝐼 の番号に対応する行ベクトルが定める小行列を 𝐴𝐼，[𝑟]

で表すと，
𝑤1 ∧ ⋯ ∧ 𝑤𝑟 = ∑

𝐼∈([𝑚]
𝑟 )

det(𝐴𝐼，[𝑟])𝑒𝐼

となるので，点 [( det(𝐴𝐼，[𝑟]))𝐼∈([𝑚]
𝑟 )] ∈ ℙ(𝑚

𝑟 )−1 が 𝑉の斉次座標を与え，この斉次座標を 𝑉
のプリュッカー座標と呼ぶ。
第一に，プリュッカー埋め込みが単射であることを見なければならない。

命題 11　プリュッカー埋め込み 𝜄 ∶ Gr𝑟(𝐸) → ℙ( ⋀𝑟 𝐸)は単射である。

証明　相異なる二点 𝑉 , 𝑉 ′ ∈ Gr𝑟(𝐸) を勝手に取る。𝑉 ∩ 𝑉 ′ の基底を 𝑒1，…，𝑒𝑘 とし，
𝑒1，…，𝑒𝑟 が 𝑉 の基底，𝑒1，…，𝑒𝑘，𝑒𝑟+1，…，𝑒2𝑟−𝑘 が 𝑉 ′ の基底となるように，𝐸 の基底
𝑒1，…，𝑒𝑚 を取る。この基底に関するプリュッカー座標を考えると，𝑉 の座標で零でない
ものは [𝑟] ∈ ([𝑚]

𝑟 )に対応する箇所のみで，𝑉 ′ の座標では [𝑟]に対応する箇所が零である。
ゆえに 𝜄(𝑉 ) ≠ 𝜄(𝑉 ′)である。 証明終　

プリュッカー埋め込みによってグラスマン多様体が射影空間の中に単射に写ることがわ
かったので，次にこの像が代数的集合であることを示す。まず 𝑆•(( ⋀𝑟 𝐸)∗) を扱うため
に，次の補題を用意する。
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補題 12 (外積と双対空間の可換性)　以下で構成する線型写像
𝑟

⋀(𝐸∗) → (
𝑟

⋀ 𝐸)
∗
；𝑣1 ∧ ⋯ ∧ 𝑣𝑟 ↦ 𝑣1 ∧ ⋯ ∧ 𝑣𝑟(⋅)

は同型である。☡
構成　𝑟個のベクトル 𝑣1，…，𝑣𝑟 ∈ 𝐸∗ が定める 𝐸𝑟 上の関数

(𝑤1，…，𝑤𝑟) ↦ det ((⟨𝑤𝑖，𝑣𝑗⟩)1≦𝑖，𝑗≦𝑟)

が，行列式が行に関して多重線型ゆえ，𝑟 重線型写像であり，𝐸⊗𝑛 の上の関数を誘導す
る。さらに行列式が行に関して歪対称ゆえ，勝手な [𝑟]上の置換 𝜎について 𝑤1 ⊗ ⋯ ⊗ 𝑤𝑟

と 𝑤𝜎(1) ⊗ ⋯ ⊗ 𝑤𝜎(𝑟) が同じ値に写り，⋀𝑟 𝐸上の関数 𝑣1 ∧ ⋯ ∧ 𝑣𝑟(⋅)を誘導する。行列式が
列について多重線型かつ歪対称であるから，写像 (𝑣1，…，𝑣𝑛) ↦ 𝑣1 ∧ ⋯ ∧ 𝑣𝑟(⋅)は線型写像
𝑣1 ∧ ⋯ ∧ 𝑣𝑟 ↦ 𝑣1 ∧ ⋯ ∧ 𝑣𝑟(⋅)を誘導する。

証明　 𝐸の基底 𝑒1，…，𝑒𝑚 と双対基底 𝑒∗
1，…，𝑒∗

𝑚 を取る。すると { 𝑒∗
𝑖1 ∧ ⋯ ∧ 𝑒∗

𝑖𝑟 ∶ 1 ≦ 𝑖1 <
⋯ < 𝑖𝑟 ≦ 𝑚 }が ⋀𝑟(𝐸∗)の基底で，構成より 𝑒∗

𝑖1 ∧ ⋯ ∧ 𝑒∗
𝑖𝑟(⋅) = (𝑒𝑖1 ∧ ⋯ ∧ 𝑒𝑖𝑟)

∗ であるので，
⋀𝑟(𝐸∗) の基底が ( ⋀𝑟 𝐸)∗ の基底に写ることがわかり，件の写像が同型であることが示さ
れた。 証明終　

記法 13 　以下 ( ⋀𝑟 𝐸)∗ を ⋀𝑟 𝐸∗ と書くことにし，⋀𝑟(𝐸∗)の元を用いて扱うことにする。
天下り的に，グラスマン多様体を定める関係式を導入する。

定義 14 (プリュッカー関係式)　 𝑟を 𝑚以下の正整数，𝑘を 𝑟以下の正整数とし，ベクトル
の列 𝒗 = (𝑣1，…，𝑣𝑟), 𝒘 = (𝑤1，…，𝑤𝑟) ∈ (𝐸∗)𝑟 を勝手に取る。
(1) 整数 𝑖1，…，𝑖𝑘 を 1 ≦ 𝑖1 < ⋯ < 𝑖𝑘 ≦ 𝑚とし，𝑣1 ∧ ⋯ ∧ 𝑣𝑟 について，各 𝑙 = 1，…，𝑘
で 𝑣𝑖𝑙 を 𝑤𝑙 と取り替えて得られる外積を

𝑣1 ∧ ⋯ 𝑤1
↑

𝑖1

∧ ⋯ ∧ 𝑤𝑘
↑
𝑖𝑘

∧ ⋯ ∧ 𝑣𝑟

で表すことにする。
(2) 𝑆•( ⋀𝑟 𝐸∗)の 2次斉次元

(𝑣1 ∧ ⋯ ∧ 𝑣𝑟)(𝑤1 ∧ ⋯ ∧ 𝑤𝑟)

− ∑
𝑖1，…，𝑖𝑘∶

1≦𝑖1<⋯<𝑖𝑘≦𝑟

(𝑣1 ∧ ⋯ 𝑤1
↑

𝑖1

∧ ⋯ ∧ 𝑤𝑘
↑
𝑖𝑘

∧ ⋯ ∧ 𝑣𝑟)(𝑣1 ∧ ⋯ ∧ 𝑣𝑘 ∧ 𝑤𝑘+1 ∧ ⋯ ∧ 𝑤𝑟)

をプリュッカー関係式と呼び，𝑃 (𝑘)
𝒗，𝒘 で表すことにする。

6



(3) プリュッカー関係式すべてで生成されるイデアル

⟨ 𝑃 (𝑘)
𝒗，𝒘 ∶ 𝒗，𝒘 ∈ (𝐸∗)𝑟，1 ≦ 𝑘 ≦ 𝑟⟩

を 𝑄𝑟 で表すことにする。
観察 15 (座標を入れる場合のプリュッカー関係式)　 𝐸 の基底 𝑒1，…，𝑒𝑚 と双対基底
𝑒∗

1，…，𝑒∗
𝑚 を取る。大小を問わない 1から 𝑚の整数 𝑖1，…，𝑖𝑟 に対し，𝑒∗

𝑖1 ∧⋯∧𝑒∗
𝑖𝑟 に対応す

る 𝑆•( ⋀𝑟 𝐸∗)の元を 𝑋𝑖1，…，𝑖𝑟 と書く。この記法を用いて，これまでの議論を書き直すと次
のようになる。

• [𝑟]上の勝手な置換 𝜎について𝑋𝑖1，…，𝑖𝑟 = sgn(𝜎)𝑋𝑖𝜎(1)，…，𝑖𝜎(𝑟)
が成立する。

• 辞書式順序で並べた ( 𝑋𝑖1，…，𝑖𝑟 ∶ 1 ≦ 𝑖1 < ⋯ < 𝑖𝑟 ≦ 𝑚 )が 𝑆1( ⋀𝑟 𝐸∗)の基底をなす。
• 点 𝑉 ∈ Gr𝑟(𝐸)と，𝑉の基底の表現行列 𝐴を勝手に取ると，整数 1 ≦ 𝑖1 < ⋯ < 𝑖𝑟 ≦ 𝑚
に対し，斉次座標の等式

[(𝑋𝑖1，…，𝑖𝑟(𝜄(𝑉 )))1≦𝑖1<⋯<𝑖𝑟≦𝑚] = [( det(𝐴{𝑖1，…，𝑖𝑟},[𝑟]))1≦𝑖1<⋯<𝑖𝑟≦𝑚]

が成立する。

このとき 𝑄𝑟 は，各 𝑣1，…，𝑤𝑟 を基底で表して，双線型性を用いて分けることで，関係式

{ 𝑋𝑖1，…，𝑖𝑟𝑋𝑗1，…，𝑗𝑟 − ∑
𝑙1，…，𝑙𝑘∶

1≦𝑙1<⋯<𝑙𝑘≦𝑟

𝑋𝑖1，…，𝑗1
↑

𝑙1

，…，𝑗𝑘
↑
𝑙𝑘

，…，𝑖𝑟𝑋𝑙1，…，𝑙𝑘，𝑗𝑘+1，…，𝑗𝑟 ∶
1 ≦ 𝑖1，…，𝑖𝑟，𝑗1，…，𝑗𝑟 ≦ 𝑚，
1 ≦ 𝑘 ≦ 𝑟

}

で生成されることがわかる。さらに外積の歪対称性を用いることで，関係式
(2.1)

{ 𝑋𝑖1，…，𝑖𝑟𝑋𝑗1，…，𝑗𝑟 − ∑
𝑙1，…，𝑙𝑘∶

1≦𝑙1<⋯<𝑙𝑘≦𝑟

𝑋𝑖1，…，𝑗1
↑

𝑙1

，…，𝑗𝑘
↑
𝑙𝑘

，…，𝑖𝑟𝑋𝑙1，…，𝑙𝑘,𝑗𝑘+1，…，𝑗𝑟 ∶
1 ≦ 𝑖1 < ⋯ < 𝑖𝑟 ≦ 𝑚，
1 ≦ 𝑗1 < ⋯ < 𝑗𝑟 ≦ 𝑚，
1 ≦ 𝑘 ≦ 𝑟

}

で 𝑄𝑟 が生成されることがわかる。このうち 𝑘 = 1のものを，古典的プリュッカー関係式

{
𝑟+1
∑
𝑙=1

(−1)𝑙𝑋𝑖1，…，𝑖𝑟−1，𝑗𝑙𝑋𝑗1，…，𝑗𝑙
∧
，…，𝑗𝑟+1

∶
1 ≦ 𝑖1 < ⋯ < 𝑖𝑟 ≦ 𝑚，
1 ≦ 𝑗1 < ⋯ < 𝑗𝑟+1 ≦ 𝑚

}

と置き換えても良い。ここで𝑋𝑗1，…，𝑗𝑙
∧
，…，𝑗𝑟+1

は，𝑗𝑙 を除いて得られる元を表す。

これから等式 𝜄(Gr𝑟(𝐸)) = 𝑉 (𝑄𝑟)の証明を目標にして議論していく。
命題 16　 𝜄(Gr𝑟(𝐸)) ⊂ 𝑉 (𝑄𝑟)が成立する。
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証明　点 𝑉 ∈ Gr𝑟(𝐸) を勝手に取る。𝑒1，…，𝑒𝑟 が 𝑉 の基底をなすように，𝐸 の基底
𝑒1，…，𝑒𝑚 を取り，𝑉 のプリュッカー座標を [(𝑥𝑖1，…，𝑖𝑟)1≦𝑖1<⋯<𝑖𝑟≦𝑚] とする。𝜄(𝑉 ) の零で
ないプリュッカー座標は 𝑥1，…，𝑟 の箇所のみである。関係式 (2.1) を次の二つの場合に分
ける。
𝑖1 = 1，…，𝑖𝑟 = 𝑟かつ 𝑗1 = 1，…，𝑗𝑟 = 𝑟の場合 このとき第一項目と第二項目が共に
𝑥2

1，…，𝑟 であるので，プリュッカー関係式を満足する。
その他の場合 このとき第一項目と第二項目が共に 0 であるので，プリュッカー関係式を
満足する。
ゆえに 𝜄(𝑉 ) ∈ 𝑉 (𝑄𝑟)である。 証明終　

命題 17　 𝑉 (𝑄𝑟) ⊂ 𝜄(Gr𝑟(𝐸))が成立する。

証明　点 𝐿 ∈ 𝑉 (𝑄𝑟)を勝手に取る。𝐸の基底 𝑒1，…，𝑒𝑚 を取って，𝐿のプリュッカー座標
[(𝑥𝑖1，…，𝑖𝑟)1≦𝑖1<⋯<𝑖𝑟≦𝑚]を考える。𝑒1，…，𝑒𝑚 の順番を並べ替えることで，𝑥1，…，𝑟 ≠ 0とし，
斉次座標を 𝑥1，…，𝑟 で一斉に割ることで，𝑥1，…，𝑟 = 1と考える。添字に関して 𝑥𝑖1，…，𝑖𝑟 が歪
対称的に振る舞うように考えて，(𝑚，𝑟)型の行列 𝐴 = (𝑎𝑠，𝑡)1≦𝑠≦𝑚，

1≦𝑡≦𝑟
を

𝑎𝑠，𝑡 = 𝑥1，…，𝑡−1，𝑠，𝑡+1，…，𝑟， 1 ≦ 𝑠 ≦ 𝑚，1 ≦ 𝑡 ≦ 𝑟

で定め，𝑒1，…，𝑒𝑚 と 𝐴で表現されるベクトル (𝑤1 ⋯ 𝑤𝑟) = (𝑒1 ⋯ 𝑒𝑚)𝐴で生成される 𝐸の
部分空間を 𝑉 とすると，𝑋𝑖1，…，𝑖𝑟 が添字に関して歪対称かつ 𝑥1，…，𝑟 = 1 であるので，
𝐴[𝑟]，[𝑟] は 𝑟次単位行列である。ゆえに det(𝐴[𝑟]，[𝑟]) = 1かつ 𝐴の階数が 𝑟で，𝑉 ∈ Gr𝑟(𝐸)
である。𝜄(𝑉 ) = 𝐿 であることを示せば証明が終わり，そのためには勝手な添字集合
𝐼 = {𝑖1 < ⋯ < 𝑖𝑟}に対し，

(2.2) det(𝐴𝐼，[𝑟]) = 𝑥𝑖1，…，𝑖𝑟

が成立することを示せば良い。(2.2) が成立することを，|𝐼 ∩ [𝑟]| に関する減少方向
の帰納法で示す。|𝐼 ∩ [𝑟]| = 𝑟 のときは，𝐼 = [𝑟] であるから既に証明済みである。
|𝐼 ∩ [𝑟]| = 𝑟 − 1のとき，𝐼 = {1，…，𝑟 − 1，𝑖𝑟}かつ 𝑖𝑟 > 𝑟と表せ，対応する小行列式は

𝐴𝐼，[𝑟] = (

1 0
⋱ ⋮

1 0
𝑎𝑖𝑟，1 ⋯ ⋯ 𝑎𝑖𝑟，𝑟

)

となる。このとき det(𝐴𝐼，[𝑟]) = 𝑎𝑖𝑟，𝑟 = 𝑥1，…，𝑟−1，𝑖𝑟 となるので，(2.2) が成立する。
|𝐼 ∩ [𝑟]| < 𝑟 − 1と仮定すると，上のときと同様に 𝑖𝑟 ∉ [𝑟]である。𝐿が 𝑄𝑟 の零点である
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から，𝑘 = 1のプリュッカー関係式により

𝑥𝑖1，…，𝑖𝑟 = 𝑥1，…，𝑟𝑥𝑖1，…，𝑖𝑟

= (−1)𝑟−1𝑥1，…，𝑟𝑥𝑖𝑟，𝑖1，…，𝑖𝑟−1

= (−1)𝑟−1
𝑟

∑
𝑗=1

𝑥1，…，𝑖𝑟
↑
𝑗

，…，𝑟𝑥𝑗，𝑖1，…，𝑖𝑟−1
（∵ 𝑘 = 1のプリュッカー関係式より。）

= (−1)𝑟−1
𝑟

∑
𝑗=1

det(𝐴(1，…，𝑖𝑟
↑
𝑗

，…，𝑟)) det(𝐴(𝑗，𝑖1，…，𝑖𝑟−1)) （∵帰納法の仮定より。）

= (−1)𝑟−1 det(𝐴[𝑟]，[𝑟]) det(𝐴(𝑖𝑟，𝑖1，…，𝑖𝑟−1)) （∵ 𝜄(𝑉 )が 𝑄𝑟 の零点なので。）

= det(𝐴𝐼，[𝑟])

と計算できる。この計算において，添字列 (𝑗1，…，𝑗𝑟) に対して，この順番で行ベクトルを
並べて得られる 𝑟次正方行列を 𝐴(𝑗1，…，𝑗𝑟) で表した。したがって帰納法によって，すべての
添字集合 𝐼 = {𝑖1 < ⋯ < 𝑖𝑟}に対して 𝑥𝑖1，…，𝑖𝑟 = det(𝐴𝐼，[𝑟])であることが分かり，𝐿 = 𝜄(𝑉 )
であることが示された。 証明終　

系 18 　グラスマン多様体 Gr𝑟(𝐸) は，プリュッカー埋め込みによって射影代数的集合
𝑉 (𝑄𝑟)に埋め込まれる。

証明　命題 11よりプリュッカー埋め込み 𝜄 ∶ Gr𝑟(𝐸) → ℙ( ⋀𝑟 𝐸)が単射で，命題 16と命
題 17により 𝜄(Gr𝑟(𝐸)) = 𝑉 (𝑄𝑟)が成立するので。 証明終　

付録　テンソル代数・対称代数・外冪

本文書で用いるテンソル代数・対称代数・外冪の定義を述べる。𝐸を有限次元 𝐾線型空
間とし，テンソル積はすべて 𝐾上で取るものとする。
定義 19 (テンソル代数)　 2以上の整数 𝑛に対して，𝑛個の 𝐸のテンソル積を 𝐸⊗𝑛 で表す
ことにする。形式的に 𝐸⊗1 を 𝐸，𝐸⊗0 を 𝐾として定める。𝐸のテンソル代数 𝑇 •(𝐸)を，
𝐾 線型空間として，𝐾 線型空間の直和⨁∞

𝑛=0 𝐸⊗𝑛 として定める。勝手な非負整数 𝑛，𝑚 に
対し，テンソル積の普遍性から線型同型 𝐸⊗𝑛 ⊗ 𝐸⊗𝑚 ⥲ 𝐸⊗𝑛+𝑚 があるので，乗算写像

𝐸⊗𝑛 × 𝐸⊗𝑚 → 𝐸⊗𝑛+𝑚；(𝑣1 ⊗ ⋯ ⊗ 𝑣𝑛，𝑤1 ⊗ ⋯ ⊗ 𝑤𝑚) ↦ 𝑣1 ⊗ ⋯ ⊗ 𝑣𝑛 ⊗ 𝑤1 ⊗ ⋯ ⊗ 𝑤𝑚

が定まる。この写像を直和に拡張すれば，乗算写像⊗∶ 𝑇 •(𝐸) × 𝑇 •(𝐸) → 𝑇 •(𝐸)を得ら
れ，𝑇 •(𝐸)に非可換 𝐾代数の構造が定まる。
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定義 20 (対称代数)　 𝐸の対称代数 𝑆•(𝐸)を，𝑇 •(𝐸)の両側イデアル

⟨𝑣 ⊗ 𝑤 − 𝑤 ⊗ 𝑣 ∶ 𝑣，𝑤 ∈ 𝐸⟩

による商環として定める。𝑣1 ⊗ ⋯ ⊗ 𝑣𝑛 の剰余類を 𝑣1 ⋯ 𝑣𝑛 で表し，𝑣1，…，𝑣𝑛 の対
称積と呼ぶ。𝑆•(𝐸) は 𝑆1(𝐸) = 𝐸 で生成される可換 𝐾 代数で，𝐸 の基底 𝑒1，…，𝑒𝑚

を取れば，𝑋1，…，𝑋𝑚 を不定元とするとき，関係 𝑋𝑖 ↦ 𝑒𝑖 によって 𝐾 代数同型
𝐾[𝑋1，…，𝑋𝑚] ⥲ 𝑆•(𝐸)が誘導される。
本文書では交代代数 ⋀•(𝐸)は導入せず，外冪 ⋀𝑛(𝐸)のみを用いる。

定義 21 (外冪)　正整数 𝑛に対し，𝑛次対称群を 𝔖𝑛 で表し，元 𝜎 ∈ 𝔖𝑛 の符号を sgn(𝑛)で
表すことにする。𝐸の 𝑛次外冪 ⋀𝑛 𝐸を，𝐸⊗𝑛 の部分空間

⟨ 𝑣1 ⊗ ⋯ ⊗ 𝑣𝑛 ∶ 𝑣1，…，𝑣𝑛 ∈ 𝐸で，𝑣𝑖 = 𝑣𝑗 となる相異なる番号 𝑖，𝑗がある ⟩

による商線型空間として定める。𝑣1 ⊗ ⋯ ⊗ 𝑣𝑛 の剰余類を 𝑣1 ∧ ⋯ ∧ 𝑣𝑛 で表し，𝑣1，…，𝑣𝑛

の外積と呼ぶ。𝑒1，…，𝑒𝑚 を 𝐸の基底とするとき，{ 𝑒𝑖1 ∧ ⋯ ∧ 𝑒𝑖𝑛 ∶ 1 ≦ 𝑖1 < ⋯ < 𝑖𝑛 ≦ 𝑚 }
が ⋀𝑛 𝐸の基底をなすので，⋀𝑛 𝐸の次元は (dim𝐸

𝑛 )である。特に 𝑛 > dim𝐸のとき ⋀𝑛 𝐸は
零線型空間である。

W
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