
7Hartshorne Exercise II
2025年 12月 23日 15時 9分更新
本文書は，修士課程在学中に取り組んだ Algebraic Geometry (Hartshorne, 1977)の演習

問題 TEXを復元することと，TEX作成の基礎鍛錬を意図したものです。
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4節

演習 4.2　 𝑆を概型とし，𝑆上の被約概型𝑋と 𝑆上の分離的概型 𝑌を考える。このとき，
二つの 𝑆上の射 𝑓，𝑔∶ 𝑋 → 𝑌が，𝑋の稠密開集合 𝑈上で等しいとき，𝑓 = 𝑔であることを
示せ。また次の二つの場合で，この結果が成立しない例を与えよ。(a) 𝑋 が被約でない。
(b) 𝑌が分離的でない。

証明　まず 𝑓と 𝑔が位相空間の連続写像として等しいことを示す。𝑓，𝑔が 𝑆上の射である
ので，ファイバー積の普遍性から図式

(4.1)

𝑋

𝑌 ×𝑆 𝑌 𝑌

𝑌 𝑆

𝑔

𝑓

⟨𝑓，𝑔⟩

𝑝2

𝑝1

（𝑝1 と 𝑝2 はファイバー積の射影を表す。）

の可換性を満足する射 ⟨𝑓，𝑔⟩ ∶ 𝑋 → 𝑌 ×𝑆 𝑌が一意的に存在する。𝑓と 𝑔が 𝑈上で等しい
ことは，包含 𝜄 ∶ 𝑈 ↪ 𝑋に対して 𝑓 ∘ 𝜄 = 𝑔 ∘ 𝜄が成立することを意味し，Δ∶ 𝑌 → 𝑌 ×𝑆 𝑌
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を対角射とするとき，二つの図式

𝑈

𝑌 ×𝑆 𝑌 𝑌

𝑌 𝑆

𝑔∘𝜄

𝑓∘𝜄

⟨𝑓,𝑔⟩∘𝜄

𝑝2

𝑝1

𝑈

𝑌 ×𝑆 𝑌 𝑌

𝑌 𝑆

𝑔∘𝜄

𝑓∘𝜄

Δ∘𝑓∘𝜄

𝑝2

𝑝1

がどちらも可換であるから，ファイバー積の普遍性より

(4.2) ⟨𝑓, 𝑔⟩ ∘ 𝜄 = Δ ∘ 𝑓 ∘ 𝜄 = Δ ∘ 𝑔 ∘ 𝜄

が成立する。よって集合として，

⟨𝑓，𝑔⟩(𝑋) = ⟨𝑓，𝑔⟩(𝑈−) （∵ 𝑈が稠密部分集合なので。）

= (Δ ∘ 𝑓)(𝑈−) （∵ (4.2)より。）

⊂ (Δ ∘ 𝑓)(𝑈)− （∵ Δ ∘ 𝑓の連続性より。）

= Δ(𝑓(𝑈))−

⊂ Δ(𝑌 ) （∵ 𝑌が分離的で，Δ(𝑌 )が閉集合であるので。）

となる。勝手な点 𝑃 ∈ 𝑋に対し，

𝑓(𝑃 ) = (𝑝1 ∘ ⟨𝑓，𝑔⟩)(𝑃 ) （∵ (4.1)の可換性より。）

= 𝑝1(⟨𝑓，𝑔⟩(𝑃 ))

= 𝑝2(⟨𝑓，𝑔⟩(𝑃 )) （∵ ⟨𝑓，𝑔⟩(𝑃 ) ∈ Δ(𝑌 )なので。）

= 𝑔(𝑃)

と計算でき，𝑓 と 𝑔 が位相空間の連続写像として等しいことがわかった。特に
𝑓∗𝒪𝑋 = 𝑔∗𝒪𝑋 である。
次に構造層の射 𝑓#，𝑔# ∶ 𝒪𝑌 → 𝑓∗𝒪𝑋 が等しいことを示す。𝑋 の点 𝑃 を勝手に固

定し，𝑓(𝑃 ) のアフィン開近傍 𝑊 を取って，𝑓−1(𝑊) を 𝑉 と置き，制限によって得
られる連続写像を 𝑓 ′ = 𝑔′ ∶ 𝑉 → 𝑊 と置くと，(𝑓∗𝒪𝑋)|𝑊 = 𝑓 ′

∗𝒪𝑉 となり，概型の射
(𝑓 ′，𝑓#|𝑊), (𝑔′，𝑔#|𝑊) ∶ (𝑉，𝒪𝑉) → (𝑊，𝒪𝑊)が得られる。制限 𝑓#|𝑊，𝑔#|𝑊 ∶ 𝒪𝑊 → 𝑓 ′

∗𝒪𝑉 が
等しいことを示す。𝑊 がアフィン概型であるので，演習 2.4 から大域切断の環準同
型 𝑓#(𝑊)，𝑔#(𝑊)∶ 𝛤(𝑊，𝒪𝑊) → 𝛤(𝑉，𝒪𝑉) によって 𝑓#|𝑊 と 𝑔#|𝑊 が決定されるので，
𝑓#(𝑊) = 𝑔#(𝑊)の成立を示せばよい。元 𝑎 ∈ 𝛤(𝑊，𝒪𝑌)を勝手に取り，𝑓#(𝑎) − 𝑔#(𝑎)を
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𝑏と置き，𝑏 = 0となることを見る。𝑈が𝑋の稠密部分集合なので，𝑈 ∩ 𝑉 ≠ ∅であり，
𝑓|𝑈 = 𝑔|𝑈 であるので，勝手な点 𝑄 ∈ 𝑈 ∩ 𝑉に対して 𝑓#

𝑄 = 𝑔#
𝑄 が成立し，

𝑏𝑄 = 𝑓#
𝑄 (𝑎𝑓(𝑄)) − 𝑔#

𝑄(𝑎𝑓(𝑄)) = 0

であることが分かる。部分集合 𝑉𝑏 = { 𝑄 ∈ 𝑉 ∶ 𝑏𝑄 ∉ 𝔪𝑄 }は演習 2.16 (a)より開集合で，
上の計算より 𝑉𝑏 ∩ (𝑈 ∩ 𝑉 ) = ∅であるのに対し，𝑈 ∩ 𝑉が 𝑉の稠密部分集合であるか
ら，𝑉𝑏 = ∅である。したがって演習 2.18 (a)と演習 2.16 (a)より，𝑉の勝手なアフィン
開集合 𝑍において制限 𝑏|𝑍 が冪零元で，𝑋が被約であるから 𝑏|𝑍 = 0であり，𝑏 = 0がわ
かった。ゆえに 𝑓#|𝑊 = 𝑔#|𝑊 である。もしアフィン開近傍𝑊 ⊂ 𝑌が 𝑓(𝑋) ∩ 𝑊 = ∅を
満足するならば，𝑓#|𝑊 と 𝑔#|𝑊 が零環の層への射となるから等しい。以上から，𝑌 のア
フィン開被覆上で 𝑓# と 𝑔# が等しく，𝑓# = 𝑔# であることが示された。 証明終　

(a)の例　𝑘を代数閉体，𝑆 = Spec 𝑘として，Spec 𝑘上の概型 Spec 𝑘[𝑥，𝑦]/(𝑥2，𝑥𝑦)を𝑋と
𝑌とすると，アフィン概型なので Spec 𝑘上分離的，かつ𝑋上で 𝑥 ≠ 0，𝑥2 = 0なので被
約でない。また 𝑘[𝑥，𝑦]のイデアルとして√(𝑥2，𝑥𝑦) = (𝑥)であるから，ヒルベルト零点定
理より

sp(𝑋) = sp(𝑌 ) = { (𝑥，𝑦 − 𝑏) ∶ 𝑏 ∈ 𝑘 } ∪ {(𝑥)}

である。𝑘代数の準同型 𝜙∶ 𝑘[𝑥，𝑦]/(𝑥2，𝑥𝑦) → 𝑘[𝑥，𝑦]/(𝑥2，𝑥𝑦)を，𝑥 ↦ 0と 𝑦 ↦ 𝑦で定ま
るものとして定め，𝜙 が定めるアフィン概型の射を 𝑓，恒等射を 𝑔 とすると，位相空間の
連続写像として 𝑓 = 𝑔である。なんとなれば，
閉点について 𝑦 − 𝑏 ∈ 𝜙−1((𝑥，𝑦 − 𝑏))なので 𝜙−1((𝑥，𝑦 − 𝑏)) = (𝑥，𝑦 − 𝑏)である。
生成点について 勝手な元 𝑏 ∈ 𝑘に対して 𝑦−𝑏 ∉ 𝜙−1((𝑥))なので，𝜙−1((𝑥)) = (𝑥)である。
となるからである。開集合 𝑈 = 𝑋 ∖ {(𝑥，𝑦)}を考える。元 𝐹(𝑥，𝑦)

𝐺(𝑥，𝑦) ∈ (𝑘[𝑥，𝑦]/(𝑥2，𝑥𝑦))𝔭 を
勝手に取るとき，𝑦𝐹(𝑥，𝑦)と 𝑦𝐺(𝑥，𝑦)は 𝑦のみで表せ，𝜙は 𝑦を 𝑦に写すので，

𝜙𝔭(𝐹(𝑥，𝑦)
𝐺(𝑥，𝑦)

) = 𝜙𝔭(𝑦𝐹(𝑥，𝑦)
𝑦𝐺(𝑥，𝑦)

) = 𝜙(𝑦𝐹(𝑥，𝑦))
𝜙(𝑦𝐺(𝑥，𝑦))

= 𝑦𝐹(𝑥，𝑦)
𝑦𝐺(𝑥，𝑦)

= 𝐹(𝑥，𝑦)
𝐺(𝑥，𝑦)

となり，𝜙𝔭 が恒等写像であることが分かる。ゆえに 𝑓#|𝑈 ∶ 𝒪𝑋|𝑈 → 𝒪𝑋|𝑈 と 𝑔#|𝑈 ∶ 𝒪𝑋|𝑈 →
𝒪𝑋|𝑈 が等しく，概型の射として 𝑓|𝑈 = 𝑔|𝑈 である。他方，閉点 𝔪 = (𝑥，𝑦)に対して

𝜙𝔪(𝑥
1) = 0

1 ≠ 𝑥
1

であるから 𝑓𝔪 ≠ 𝑔𝔪 がわかり，概型の射として 𝑓 ≠ 𝑔である。 終　
(b) の例　 𝑘 を体として，𝑋 を 𝔸1

𝑘 = Spec 𝑘[𝑥]，𝑌 を二重原点を持つアイフィン直線
とする。このとき，貼り合わせによって付随する相異なる射 𝑓，𝑔∶ 𝑋 → 𝑌 があって，
𝑈 = 𝑋 ∖ {(𝑥)}とするとき 𝑓|𝑈 = 𝑔|𝑈 である。 終　
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演習 4.4 　ネーター概型 𝑆上の有限型分離的概型𝑋, 𝑌と，その間の射 𝑓∶ 𝑋 → 𝑌を考え
る。このとき，𝑆上固有な閉部分概型 𝑍に対し，𝑓(𝑍)が 𝑌の閉集合で，𝑓の概型論的像が
𝑆上固有であることを示せ。
補題 (グラフ射は対角射の底変換)　概型 𝑆上の射 𝑓∶ 𝑋 → 𝑌と恒等射 id𝑋 ∶ 𝑋 → 𝑋に対
し，図式

𝑋

𝑋 ×𝑆 𝑌 𝑌

𝑋 𝑆

𝑓

id𝑋

Γ𝑓

𝑝2

𝑝1

（𝑝1 と 𝑝2 はファイバー積の射影を表す。）

の可換性を満足する射 Γ𝑓 ∶ 𝑋 → 𝑋 ×𝑆 𝑌 が一意的に存在し，𝑓 のグラフ射と呼ぶ。同様
に，図式

𝑋 ×𝑆 𝑌

𝑌 ×𝑆 𝑌 𝑌

𝑌 𝑆

id𝑌∘𝑝2

𝑓∘𝑝1

𝑓×id𝑌

𝑞2

𝑞1

（𝑞1 と 𝑞2 はファイバー積の射影を表す。）

の可換性を満足する射 id𝑌 × 𝑓 が一意的に存在する。このとき Γ𝑓 は，対角射
Δ∶ 𝑌 → 𝑌 ×𝑆 𝑌の 𝑓 × id𝑌 による底変換である。

証明　まず次の図式

(4.3)
𝑋 𝑋 ×𝑆 𝑌

𝑌 𝑌 ×𝑆 𝑌

Γ𝑓

𝑓 𝑓×id𝑌

Δ

が可換であることを，ファイバー積 (𝑌 ×𝑆 𝑌，𝑞1，𝑞2)の普遍性を用いて示す。つまり図式

𝑋

𝑌 𝑌 ×𝑆 𝑌 𝑌

𝑓𝑓

𝑞2𝑞1
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の破線の射の箇所に Δ ∘ 𝑓と (𝑓 × id𝑌) ∘ Γ𝑓 を代入して，図式の可換性が満足されることを
示す。Δ ∘ 𝑓について計算すると，

𝑞1 ∘ (Δ ∘ 𝑓) = (𝑞1 ∘ Δ) ∘ 𝑓 = id𝑌 ∘ 𝑓 = 𝑓，

𝑞2 ∘ (Δ ∘ 𝑓) = ⋯ = 𝑓

となるので可換性を満足し，(𝑓 × id𝑌) ∘ Γ𝑓 についても

𝑞1 ∘ ((𝑓 × id𝑌) ∘ Γ𝑓) = (𝑞1 ∘ (𝑓 × id𝑌)) ∘ Γ𝑓 = 𝑓 ∘ 𝑝1 ∘ Γ𝑓 = 𝑓 ∘ id𝑋 = 𝑓，

𝑞2 ∘ ((𝑓 × id𝑌) ∘ Γ𝑓) = (𝑞2 ∘ (𝑓 × id𝑌)) ∘ Γ𝑓 = 𝑝2 ∘ Γ𝑓 = 𝑓

となるので可換性を満足する。ゆえに図式 (4.3) は可換である。この可換図式がファイ
バー積の普遍性を満足することを示して証明を終える。可換図式

𝑍 𝑋 ×𝑋 𝑌

𝑌 𝑌 ×𝑆 𝑌

𝑧2

𝑧1 𝑓×id𝑌

Δ

が与えられているとする。𝑝1 ∘ 𝑧2 ∶ 𝑍 → 𝑋を ℎと置くと，図式

(4.4)
𝑍

𝑌 𝑋 𝑋 ×𝑆 𝑌

𝑧2𝑧1 ℎ

Γ𝑓𝑓

が可換である。なんとなれば，𝑓 ∘ ℎについては

(4.5) 𝑓 ∘ ℎ = 𝑓 ∘ 𝑝1 ∘ 𝑧2 = 𝑞1 ∘ (𝑓 × id𝑌) ∘ 𝑧2 = 𝑞1 ∘ Δ ∘ 𝑧1 = id𝑌 ∘ 𝑧1 = 𝑧1

と計算でき，Γ𝑓 ∘ ℎについては図式

𝑊

𝑋 𝑋 ×𝑆 𝑌 𝑌

𝑧1ℎ Γ𝑓∘ℎ𝑧2

𝑝2𝑝1

が計算

𝑝1 ∘ 𝑧2 = ℎ， （∵定義。）

𝑝2 ∘ 𝑧2 = 𝑞2 ∘ (𝑓 × id𝑌) ∘ 𝑧2 = 𝑞2 ∘ Δ ∘ 𝑧1 = id𝑋 ∘ 𝑧1 = 𝑧1，

𝑝1 ∘ (Γ𝑓 ∘ ℎ) = id𝑋 ∘ ℎ = ℎ，
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𝑝2 ∘ (Γ𝑓 ∘ ℎ) = 𝑓 ∘ ℎ = 𝑧1 （∵ (4.5)より。）

により可換なので，ファイバー積の普遍性から Γ𝑓 ∘ℎ = 𝑧2 である。最後に，他に可換図式

𝑍

𝑌 𝑋 𝑋 ×𝑆 𝑌

𝑧2𝑧1 ℎ′

Γ𝑓𝑓

が与えられているとすると，

ℎ = 𝑝1 ∘ 𝑧2 = 𝑝1 ∘ Γ𝑓 ∘ ℎ′ = id𝑋 ∘ ℎ′ = ℎ′

となるので，図式 (4.4)を可換にする ℎは一意的である。 証明終　

補題 (全射な射は底変換で不変)　概型の射 𝑓∶ 𝑋 → 𝑌 が位相空間の連続写像として全射
であるとき，全射な射と呼ぶ。全射な射は底変換で不変である。より正確にいうと，全射
な射 𝑓∶ 𝑋 → 𝑌と概型の射 𝑔∶ 𝑌 ′ → 𝑌に対し，底変換 𝑓 ′ ∶ 𝑋 ×𝑌 𝑌 ′ → 𝑌 ′ は全射である。

証明　勝手な点 𝑦′ ∈ 𝑌 ′ に対し，𝑓 ′−1(𝑦′) ≠ ∅ が成り立つことを示せば良い。演習
3.10(a)と底変換が推移的であることから，位相空間の同相

𝑓 ′−1(𝑦′) ≅
3.10 (a)

sp ((𝑋 ×𝑌 𝑌 ′)𝑘(𝑦′)) = sp ((𝑋 ×𝑌 𝑌 ′) ×𝑌 ′ Spec 𝑘(𝑦′)) ≅ sp(𝑋 ×𝑌 Spec 𝑘(𝑦′))

があるので，𝑋 ×𝑌 Spec 𝑘(𝑦′) ≠ ∅であることを示せば良い。底変換の推移性をさらに用
いると，概型として

𝑋×𝑌Spec 𝑘(𝑦′) ≅ (𝑋×𝑌Spec 𝑘(𝑔(𝑦′)))×Spec 𝑘(𝑔(𝑦′))Spec 𝑘(𝑦′) = 𝑋𝑘(𝑔(𝑦′)) ×𝑘(𝑔(𝑦′))Spec 𝑘(𝑦′)

であり，演習 3.10(a)より 𝑓−1(𝑔(𝑦′)) ≅ sp(𝑋𝑔(𝑦′))で，𝑓の全射性よりこの空間が空でない
ことが分かる。ゆえに空でないアフィン開集合 𝑈 ⊂ 𝑋𝑔(𝑦′) を取れ，𝑈 ×𝑘(𝑔(𝑦′)) Spec 𝑘(𝑦′)
が空でないことを示せば証明が終わる。𝑈 と同型なアフィン概型 Spec𝐴 を取ると，𝐴
が零でない 𝑘(𝑔(𝑦′))代数で，かつ 𝑈 ×𝑘(𝑔(𝑦′)) Spec 𝑘(𝑦′) ≅ Spec (𝐴 ⊗𝑘(𝑔(𝑦′)) 𝑘(𝑦′))である。
𝐴 ⊗𝑘(𝑔(𝑦′)) 𝑘(𝑦′)が体 𝑘(𝑦′)を包含するので，特に零環でない。ゆえに 𝐴 ⊗𝑘(𝑔(𝑦′)) 𝑘(𝑦′)が極
大イデアルを持ち，Spec (𝐴 ⊗𝑘(𝑔(𝑦′)) 𝑘(𝑦′))が点を少なくとも一つ点を持つことが分かる。

証明終　

演習 4.4の証明　 𝑋と 𝑌がネーター概型上の有限型概型であるから，演習 3.3 (g)よりこ
れらはネーター的である。また演習 3.3 (a) より閉埋め込みが有限型であるので，𝑋 の
ネーター性から 𝑍もネーター的である。(𝑍 → 𝑆) = (𝑌 → 𝑆) ∘ (𝑓|𝑍)が固有かつ 𝑌 → 𝑆が
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分離的であるので，系 4.8(e) より 𝑓|𝑍 も固有である。よって，固有射は閉写像であるの
で，𝑓(𝑍)が閉集合であることが従う。 証明終　

W
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