
モジュラー形式に関する書き留め

2026年 1月 21日 2時 23分更新
Robert Kurinczuk氏の講義ノート [1]の勉強を書き留めたものです。複素関数論の知識

は [2]に準じています。
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約束
1. 整数すべてがなす環を ℤ，実数体を ℝ，複素数体を ℂで表す。
2. 虚数単位を 𝑖で表すことにする。
3. 複素数 𝑧の実部を ℜ𝑧，虚部を ℑ𝑧で表す。
4. 単位的可換環 𝑅 と正整数 𝑛 に対し，𝑅 係数 𝑛 次一般線形群を GL𝑛(𝑅)，特殊線形群
を SL𝑛(𝑅)，特殊直交群を SO𝑛(𝑅)で表す。

5. 二つの整数 𝑚，𝑛に対して，その最大公約数を gcd(𝑚，𝑛)で表す。

W

1 特殊線形群と上半平面

定義 1.1　集合 { 𝑧 ∈ ℂ ∶ ℑ𝑧 > 0 }を ℍと置き，上半平面と呼ぶ。
命題 1.2　元 𝛾 = ( 𝑎 𝑏

𝑐 𝑑 ) ∈ GL2(ℝ)に対して定まる正則関数 𝛾 ⋅ 𝑧 = 𝑎𝑧+𝑏
𝑐𝑧+𝑑 は

𝑐 ≠ 0 ⟹ 𝛾 ⋅ (−𝑑/𝑐) = ∞， 𝛾 ⋅ ∞ = 𝑎/𝑐

𝑐 = 0 ⟹ 𝛾 ⋅ ∞ = ∞

と拡張できる定数でない ℂ ∪ {∞}上の有理型関数である。さらに関係 (𝛾，𝑧) ↦ 𝛾 ⋅ 𝑧によっ
て GL2(ℝ)の ℂ ∪ {∞}への作用が定まる。

証明　関数 𝛾 ⋅ (−)∶ ℂ ∪ {∞} → ℂ ∪ {∞}が有理型であることについて　　 𝑐 = 0のときは
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明らかであるから，𝑐 ≠ 0のときを考える。lim𝑛→∞ 𝑧𝑛 = −𝑑/𝑐なる複素数列 (𝑧𝑛)∞
𝑛=1 を勝

手に考えるとき，lim𝑛→∞ 𝑐𝑧𝑛 + 𝑑 = 0かつ lim𝑛→∞ 𝑎𝑧𝑛 + 𝑏 = −(𝑎𝑑 − 𝑏𝑐)/𝑐 ≠ 0であるか
ら，lim𝑛→∞ 𝛾⋅𝑧𝑛 = ∞である。ゆえに 𝛾⋅(−)は ℂ上有理型である。同様に lim𝑛→∞ 𝑧𝑛 = ∞
なる複素数列 (𝑧𝑛)∞

𝑛=1 を勝手に考えるとき，すべての 𝑛について 𝑧𝑛 ≠ 0として良く，

𝑎𝑧𝑛 + 𝑏
𝑐𝑧𝑛 + 𝑑 = 𝑎 + 𝑏/𝑧𝑛

𝑐 + 𝑑/𝑧𝑛
→ 𝑎

𝑐 (𝑛 → ∞)

であるから 𝛾 ⋅ (−)は ℂ ∪ {∞}上の有理型関数である。
関係 (𝛾，𝑧) ↦ 𝛾⋅𝑧が群作用であることについて　　 𝛾 = ( 1 0

0 1 )のとき 𝛾⋅𝑧 = 𝑧+0
0+1 = 𝑧であ

るので，後は結合律を見れば良い。元 𝛾，𝛾′ ∈ GL2(ℝ)を勝手に取り，𝛾 = ( 𝑎 𝑏
𝑐 𝑑 )，𝛾′ = ( 𝑎′ 𝑏′

𝑐′ 𝑑′ )
と表すとき，

𝛾′ ⋅ 𝛾 = (
𝑎𝑎′ + 𝑏′𝑐 𝑎′𝑏 + 𝑏′𝑑
𝑎𝑐′ + 𝑐𝑑′ 𝑏𝑐′ + 𝑑𝑑′

)

である。正則関数 𝛾′ = 𝑎′𝑧+𝑏′

𝑐′𝑧+𝑑′ の定義域を 𝑈(⊂ ℂ)とすると，連続性から，𝛾(𝑉 ) ⊂ 𝑈と
なる開集合 𝑉 ⊂ ℂを取れる。勝手な複素数 𝑧 ∈ 𝕍に対して，

𝛾′ ⋅ (𝛾 ⋅ 𝑧) = 𝛾′ ⋅ 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑

=
(𝑎𝑧+𝑏

𝑐𝑧+𝑑 )𝑎′ + 𝑏′

(𝑎𝑧+𝑏
𝑐𝑧+𝑑 )𝑐′ + 𝑑′

= (𝑎𝑧 + 𝑏)𝑎′ + 𝑏′(𝑐𝑧 + 𝑑)
(𝑎𝑧 + 𝑏)𝑐′ + 𝑑′(𝑐𝑧 + 𝑑) （分母を払った）

= (𝑎𝑎′ + 𝑏′𝑐)𝑧 + (𝑎′𝑏 + 𝑏′𝑑)
(𝑎𝑐′ + 𝑐𝑑′)𝑧 + (𝑏𝑐′ + 𝑑𝑑′) （分母分子を 𝑧についてまとめた）

= (𝛾′ ⋅ 𝛾) ⋅ 𝑧

と計算でき，一致の定理から ℂ ∪ {∞}上の関数として 𝛾′ ⋅ (𝛾 ⋅ (−)) = (𝛾′ ⋅ 𝛾) ⋅ (−)である
ことが分かる。よって (𝛾，𝑧) ↦ 𝛾 ⋅ 𝑧が群作用であることが確かめられた。 証明終　

命題 1.3　元 𝛾 = ( 𝑎 𝑏
𝑐 𝑑 ) ∈ GL2(ℝ)と複素数 𝑧に対して，

(1.1) ℑ(𝛾 ⋅ 𝑧) = det(𝛾) ℑ𝑧
|𝑐𝑧 + 𝑑|2

が成立する。

証明　複素数 𝑧の共役を ̅𝑧で表すことにする。このとき

2𝑖ℑ(𝛾 ⋅ 𝑧) = 𝛾 ⋅ 𝑧 − ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅𝛾 ⋅ 𝑧 ∵定義
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= 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑 − 𝑎 ̅𝑧 + 𝑏

𝑐 ̅𝑧 + 𝑑
∵ 𝑎，𝑏，𝑐，𝑑 ∈ ℝなので

= (𝑎𝑧 + 𝑏)(𝑐 ̅𝑧 + 𝑑) − (𝑐𝑧 + 𝑑)(𝑎 ̅𝑧 + 𝑏)
|𝑐𝑧 + 𝑑|2

= (𝑎𝑑 − 𝑏𝑐)(𝑧 − ̅𝑧)
|𝑐𝑧 + 𝑑|2

= det(𝛾) 2𝑖ℑ𝑧
|𝑐𝑧 + 𝑑|2

と計算でき，この計算結果を 2𝑖で割れば目的の等式を得る。 証明終　

系 1.4　関係 (𝛾，𝑧) ↦ 𝛾 ⋅ 𝑧によって SL2(ℝ)は ℍに作用する。

証明　 𝛾 ∈ SL2(ℝ)，𝑧 ∈ ℍのとき det(𝛾) = 1 > 0かつ ℑ𝑧 > 0であるから，(1.1)より
ℑ(𝛾 ⋅ 𝑧) > 0であり，これは 𝛾 ⋅ 𝑧 ∈ ℍを意味する。 証明終　

命題 1.5　 SL2(ℝ)の ℍへの作用は推移的である。

証明　複素数 𝑧 ∈ ℍを勝手に取り，𝑧 = 𝑥 + 𝑖𝑦，𝑥，𝑦 ∈ ℝと表すと，𝑦 > 0であることに
注意して，

(√𝑦 𝑥
√𝑦

0 1
√𝑦

) ⋅ 𝑖 = √𝑦𝑖 + 𝑥/√𝑦
1/√𝑦 = 𝑥 + 𝑖𝑦 = 𝑧

と計算できるので，SL2(ℝ) ⋅ 𝑖 = ℍである。 証明終　

命題 1.6 　安定化部分群 SL2(ℝ)𝑖 は特殊直交群 SO2(ℝ) と等しい。したがって関係
SO2(ℝ) ⋅ 𝛾 ↦ 𝛾 ⋅ 𝑖は全単射写像 SO2(ℝ)\SL2(ℝ) → ℍを定める。

証明　元 𝛾 ∈ SL2(ℝ)𝑖 を勝手に取り，𝛾 = ( 𝑎 𝑏
𝑐 𝑑 )と表すと，

𝛾 ⋅ 𝑖 = 𝑖 ⟺ 𝑎𝑖 + 𝑏
𝑐𝑖 + 𝑑 = 𝑖

⟺ 𝑏 + 𝑖𝑎 = −𝑐 + 𝑖𝑑

⟺ 𝑎 = 𝑑かつ 𝑐 = −𝑏

⟺ 𝛾が直交行列である

となり，これは SL2(ℝ)𝑖 = SO2(ℝ)であることを意味する。 証明終　
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2 モジュラー関数

定義 2.1 (弱モジュラー関数)　 𝑘を整数とする。有理型関数 𝑓∶ ℍ → ℂ ∪ {∞}がレベル 1
荷重 𝑘 の弱モジュラー関数であるとは，勝手な元 𝛾 = ( 𝑎 𝑏

𝑐 𝑑 ) ∈ SL2(ℤ) と勝手な複素数
𝑧 ∈ ℍに対して

(⋆) 𝑓(𝛾 ⋅ 𝑧) = (𝑐𝑧 + 𝑑)𝑘𝑓(𝑧)

が成立するときをいう。
命題 2.2　レベル 1荷重 𝑘の弱モジュラー関数 𝑓を考える。このとき勝手な複素数 𝑧 ∈ ℍ
に対して次の三つが成立する。
(1) 𝑓(𝑧) = (−1)𝑘𝑓(𝑧) が成り立つ。ゆえに 𝑓 が恒等的に零でなければ，𝑘 は偶数でなけ
ればならない。

(2) 𝑓(𝑧 + 1) = 𝑓(𝑧)が成り立つ。ゆえに 𝑓は周期的関数である。
(3) 𝑓(−𝑧−1) = 𝑧𝑘𝑓(𝑧)が成り立つ。

証明　 (1)について　　 𝛾 = ( −1 0
0 −1 )とすれば，𝛾 ∈ SL2(ℤ)で，

𝑓(𝑧) = 𝑓(𝛾 ⋅ 𝑧) = (0 ⋅ 𝑧 + (−1))𝑘𝑓(𝑧) = (−1)𝑘𝑓(𝑧)

と計算できる。
(2)について　　 𝛾 = ( 1 1

0 1 )とすれば，𝛾 ∈ SL2(ℤ)で，

𝑓(𝑧 + 1) = 𝑓(𝛾 ⋅ 𝑧) = (0 ⋅ 𝑧 + 1)𝑘𝑓(𝑧) = 𝑓(𝑧)

と計算できる。
(3)について　　 𝛾 = ( 0 −1

1 0 )とすれば，𝛾 ∈ SL2(ℤ)で，

𝑓(−𝑧−1) = 𝑓(𝛾 ⋅ 𝑧) = (𝑧 + 0)𝑘𝑓(𝑧) = 𝑧𝑘𝑓(𝑧)

と計算できる。 証明終　

命題 2.3 　複素数 𝑧 ∈ ℂに対して 𝑞(= 𝑞(𝑧)) = exp(2𝜋𝑖𝑧)と置く。このとき 𝑧 ∈ ℍである
ためには，0 < |𝑞| < 1であることが必要十分である。

証明　複素数 𝑧 ∈ ℂに対して

|𝑞| = | exp(−2𝜋ℑ𝑧 + 2𝜋𝑖ℜ𝑧)|

= | exp(−2𝜋ℑ𝑧)|| cos(2𝜋ℜ𝑧) + 𝑖 sin(2𝜋ℜ𝑧)|
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= | exp(−2𝜋ℑ𝑧)|

であるから，
0 < |𝑞| < 1 ⟺ −2𝜋ℑ𝑧 < 0 ⟺ ℑ𝑧 > 0 ⟺ 𝑧 ∈ ℍ

であることが分かる。 証明終　

穴あき単位円盤 { 𝑞 ∈ ℂ：0 < |𝑞| < 1 }を 𝔻∗ と置く。また実数 𝑎に対して

𝛺𝑎 = { 𝑤 ∈ ℂ ∶ 𝑧 ≠ 0，𝑎 < arg𝑤 < 2𝜋 + 𝑎 }

𝐷𝑎 = { 𝑧 ∈ ℂ ∶ 𝑎 < ℑ𝑧 < 2𝜋 + 𝑎 }

として対数関数の分枝

𝐿𝑎 ∶ 𝛺𝑎 → 𝐷𝑎; 𝑤 ↦ log |𝑤| + 𝑖 arg𝑤， 𝑎 < arg𝑤 < 2𝜋 + 𝑎

を定める。
命題 2.4 　 𝑓を弱モジュラー関数とする。各点 𝑞 ∈ 𝔻∗ に対して，𝑞 ∈ 𝛺𝑎 を満足するよう
な対数関数の分枝 𝐿𝑎 ∶ 𝛺𝑎 → 𝐷𝑎 を一つ取る。このとき複素数

(2.1) 𝑓 (𝑞) = 𝑓 (𝐿𝑎(𝑞)
2𝜋𝑖 )

は分枝の取り方に依存しない。したがって (2.1) によって 𝔻∗ 上の有理型関数 𝑓 が定ま
る。また (2.1)を単に

𝑓 (𝑞) = 𝑓 ( log 𝑞
2𝜋𝑖 )

と表す。

証明　 𝑞 ∈ 𝛺𝑎，𝑞 ∈ 𝛺𝑎′ となる二つの分枝 𝐿𝑎，𝐿𝑎′ を取ると，整数 𝑛 を用いて
𝐿𝑎(𝑞) = 𝐿𝑎′(𝑞) + 2𝑛𝜋𝑖と表せるので，

𝐿𝑎(𝑞)
2𝜋𝑖 = 𝐿𝑎′(𝑞)

2𝜋𝑖 + 𝑛

となる。またさらに 𝑞 ∈ 𝔻∗ であれば，

exp (2𝜋𝑖𝐿𝑎(𝑞)
2𝜋𝑖 ) = 𝑞 ∈ 𝔻∗， exp (2𝜋𝑖𝐿𝑎′(𝑞)

2𝜋𝑖 ) = 𝑞 ∈ 𝔻∗

であるので，命題 2.3より 𝐿𝑎(𝑞)/(2𝜋𝑖)，𝐿𝑎′(𝑞)/(2𝜋𝑖) ∈ ℍである。命題 2.2 (2)より 𝑓が
𝑓(𝑧 + 1) = 𝑓(𝑧)を満足する周期関数であるから，𝑞 ∈ 𝔻∗ のとき，

𝑓 (𝐿𝑎(𝑞)
2𝜋𝑖 ) = 𝑓 (𝐿𝑎′(𝑞)

2𝜋𝑖 + 𝑛) = 𝑓 (𝐿𝑎′(𝑞)
2𝜋𝑖 )
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となり，(2.1)が分枝の取り方に依存しないことが分かった。𝐿𝑎(𝑞)/2𝜋𝑖は 𝔻∗ ∩ 𝛺𝑎 上の有
理型関数，𝑓 も ℍ 上の有理型関数であるから，これら関数の合成である 𝑓 は 𝔻∗ ∩ 𝛺𝑎 上
の有理型関数である。⋃𝑎>0(𝔻∗ ∩ 𝛺𝑎) = 𝔻∗ であるから，𝑓 が 𝔻∗ 上の有理型関数である
ことが分かった。 証明終　

定義 2.5　 𝑓を弱モジュラー関数とする。
(1) 𝑓 が 0で有理型であるとき，𝑓が∞で有理型という。
(2) 𝑓 が 0で正則であるとき，𝑓が∞で正則という。
𝑓 が 0で有理型のとき，ローラン展開

𝑓 (𝑞) =
∞
∑

𝑛=−𝑁
𝑎(𝑛)𝑞𝑛

ができ，𝑞 = 𝑞(𝑧) = exp(2𝜋𝑖𝑧)のとき

𝑓(𝑧) = 𝑓 ( log exp(2𝜋𝑖𝑧)
2𝜋𝑖 ) = 𝑓 (exp(2𝜋𝑖𝑧)) =

∞
∑

𝑛=−𝑁
𝑎(𝑛)𝑒2𝑛𝜋𝑖𝑧

となり，𝑓のフーリエ展開を与える。複素数列 (𝑎(𝑛))∞
𝑛=−𝑁 を 𝑓のフーリエ係数と呼ぶ。ま

た 𝑓が∞で正則であれば，𝑁 = 0とできる。
定義 2.6 (モジュラー関数とモジュラー形式)　 𝑓∶ ℍ → ℂ ∪ {∞}をレベル 1荷重 𝑘の弱モ
ジュラー関数とする。
(1) 𝑓が∞で有理型のとき，𝑓をレベル 1荷重 𝑘のモジュラー関数と呼ぶ。
(2) 𝑓が ℍ上の正則関数で，かつ∞で正則のとき，𝑓をレベル 1荷重 𝑘のモジュラー形
式と呼ぶ。

(3) モジュラー形式 𝑓∶ ℍ → ℂの 𝑞展開とは，𝑓 のローラン展開が与えるフーリエ展開

𝑓(𝑧) =
∞
∑
𝑛=0

𝑎(𝑛)𝑞𝑛 =
∞
∑
𝑛=0

𝑎(𝑛)𝑒2𝑛𝑖𝜋𝑧

のことをいう。さらに 𝑎(0) = 0のとき 𝑓を尖点形式という。
命題 2.7　 𝑘を整数とし，集合𝑀𝑘，𝑆𝑘 を

𝑀𝑘 = { 𝑓 ∶ 𝑓はレベル 1荷重 𝑘のモジュラー形式である }

𝑆𝑘 = { 𝑓 ∶ 𝑓は 1荷重 𝑘の尖点形式である }

で定める。このとき𝑀𝑘 と 𝑆𝑘 は ℂ線形空間である。

証明　 𝑀𝑘 が各点和で閉じていることを見る。モジュラー形式 𝑓，𝑔 ∈ 𝑀𝑘 を勝手に取ると
き，正則関数の和は正則関数であるから，𝑓 + 𝑔∶ ℍ → ℂと 𝑓 + 𝑔 ∶ 𝔻∗ ∪ {0} → ℂは正則
関数である。定義から (𝑓 + 𝑔)̃ = 𝑓 + 𝑔 であるから，(𝑓 + 𝑔)̃ ∶ 𝔻∗ → ℂは正則関数であ
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る。あとは 𝑓 + 𝑔が (⋆)を満足することを示せば，𝑓 + 𝑔 ∈ 𝑀𝑘 であることが分かる。元
𝛾 = ( 𝑎 𝑏

𝑐 𝑑 ) ∈ SL2(ℤ)と点 𝑧 ∈ ℍを勝手に取ると，

(𝑓 + 𝑔)(𝛾 ⋅ 𝑧) = 𝑓(𝛾 ⋅ 𝑧) + 𝑔(𝛾 ⋅ 𝑧)

= (𝑐𝑧 + 𝑑)𝑘𝑓(𝑧) + (𝑐𝑧 + 𝑑)𝑘𝑔(𝑧)

= (𝑐𝑧 + 𝑑)𝑘(𝑓 + 𝑔)(𝑧)

と計算でき，(⋆) を 𝑓 + 𝑔 が満足することが確かめられ，𝑓 + 𝑔 ∈ 𝑀𝑘 である。𝑀𝑘 がス
カラー倍で閉じていることも同様に示せるので省略する。勝手な尖点形式 𝑓，𝑔 ∈ 𝑆𝑘 に
対して，(𝑓 + 𝑔)̃ = 𝑓 + 𝑔 が成立することから，𝑆𝑘 が ℂ線形空間であることも従う。

証明終　

命題 2.8 　整数 𝑘，𝑙とモジュラー形式 𝑓 ∈ 𝑀𝑘，𝑔 ∈ 𝑀𝑙 に対し，𝑓𝑔 ∈ 𝑀𝑘+𝑙 が成立する。ま
た 𝑓が尖点形式のとき 𝑓𝑔も尖点形式である。

証明　正則関数の積は正則関数であるから，𝑓𝑔∶ ℍ → ℂと 𝑓 𝑔 ∶ 𝔻∗ → ℂは正則関数であ
る。定義から (𝑓𝑔)̃ = 𝑓 𝑔 であるから，(𝑓𝑔)̃も正則関数である。あとは 𝑓𝑔が (⋆)を満足
することを示せばよく，元 𝛾 = ( 𝑎 𝑏

𝑐 𝑑 ) ∈ SL2(ℤ)と点 𝑧 ∈ ℍを勝手に取ると，

(𝑓𝑔)(𝛾 ⋅ 𝑧) = (𝑐𝑧 + 𝑑)𝑘𝑓(𝑧)(𝑐𝑧 + 𝑑)𝑙𝑔(𝑧)

= (𝑐𝑧 + 𝑑)𝑘+𝑙(𝑓𝑔)(𝑧)

と計算できるので，𝑓𝑔 ∈ 𝑀𝑘+𝑙 であることが確かめられた。また 𝑓が尖点形式のとき，

𝑓 (𝑞) =
∞
∑
𝑛=0

𝑎(𝑛)𝑞𝑛

𝑔 (𝑞) =
∞
∑
𝑛=0

𝑏(𝑛)𝑞𝑛

とローラン展開すると，

(𝑓𝑔)̃(𝑞) =
∞
∑
𝑛=0

𝑐(𝑛)𝑞𝑛， 𝑐(𝑛) =
𝑛

∑
𝑚=0

𝑎(𝑚)𝑏(𝑛 − 𝑚)

であるから，特に 𝑐(0) = 𝑎(0)𝑏(0) = 0で，𝑓𝑔は尖点形式であることが分かる。 証明終　
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3 アイゼンシュタイン級数

定義 3.1　 𝑘を 3以上の整数とする。各複素数 𝑧 ∈ ℍに対して，級数

𝐺𝑘(𝑧) = ∑
(𝑚，𝑛)∈ℤ2 ∶

(𝑚，𝑛)≠(0,0)

1
(𝑚𝑧 + 𝑛)𝑘

を定め，𝐺𝑘(𝑧)をアイゼンシュタイン級数と呼ぶ。
第一にアイゼンシュタイン級数の収束を調べなければならない。

補題 3.2　 𝐾をℍの有界閉集合とする。このとき勝手な点 𝑧 ∈ 𝐾と元 (𝑚，𝑛) ∈ ℤ2∖{(0，0)}
に対して

(3.1) 𝐶max{|𝑚|，|𝑛|} ≦ |𝑚𝑧 + 𝑛|

が成立するような正数 𝐶が存在する。

証明　 𝐶1 = min{ ℑ𝑧 ∶ 𝑧 ∈ 𝐾 }，𝐶2 = max{ |ℜ𝑧| ∶ 𝑧 ∈ 𝐾 }と置く。
点 𝑧 ∈ 𝐾と元 (𝑚，𝑛) ∈ ℤ2 ∖ {(0，0)}を勝手に取り，𝑧 = 𝑥 + 𝑖𝑦（𝑥，𝑦 ∈ ℝ）と表すと，

|𝑚𝑧 + 𝑛| = |(𝑚𝑥 + 𝑛) + 𝑖𝑚𝑦| = √(𝑚𝑥 + 𝑛)2 + (𝑚𝑦)2

となる。𝐶2 = 0であれば常に 𝑥 = 0で，|𝑚𝑧 + 𝑛| ≧ |𝑚𝑥 + 𝑛| = |𝑛|かつ |𝑚𝑧 + 𝑛| ≧
𝑦|𝑚| ≧ 𝐶1|𝑚|であるから，𝐶 = min {1，𝐶1}が (3.5)を満足する正数である。𝐶2 ≠ 0の場
合を考える。前述の議論と同じく |𝑚|については |𝑚𝑧 + 𝑛| ≧ 𝐶1|𝑚|である。|𝑛|について，
|𝑚| ≧ |𝑛|/(2𝐶2)のとき

(3.2) |𝑚𝑧 + 𝑛| ≧ 𝐶1|𝑚| ≧ 𝐶1
2𝐶2

|𝑛|

となり，そうでないとき 𝑛 ≠ 0かつ |𝑚/𝑛| < 1/(2𝐶2)となり，常に |𝑚/𝑛||𝑥| ≦ 1/2で，

(3.3) |𝑚𝑥 + 𝑛| = ∣𝑛(𝑚
𝑛 𝑥 + 1)∣ ≧ |𝑛|(1 − ∣𝑚𝑛 ∣|𝑥|) ≧ 1

2|𝑛|

となる。(3.2)と (3.3)を踏まえると，𝐶 = min {𝐶1，𝐶1/(2𝐶2)，1/2}が (3.5)を満足する正
数である。 証明終　

定理 3.3　 𝑘 ≧ 3のとき 𝐺𝑘 は ℍ上の正則関数に絶対収束かつ広義一様収束する。

証明　 𝐾 を ℍ の勝手な有界閉集合とする。補題 3.2 より，勝手な点 𝑧 ∈ 𝐾 と勝手な元
(𝑚，𝑛) ∈ ℤ2 ∖ {(0，0)}に対して

𝐶max{|𝑚|，|𝑛|} ≦ |𝑚𝑧 + 𝑛|

8



となるような正数 𝐶が存在し，

∑
(𝑚，𝑛)∈ℤ2 ∶

(𝑚，𝑛)≠(0，0)

1
|𝑚𝑧 + 𝑛|𝑘

≦ 1
𝐶𝑘 ∑

(𝑚，𝑛)∈ℤ2 ∶
(𝑚，𝑛)≠(0，0)

1
max{|𝑚|，|𝑛|}𝑘

であるから，右辺の級数の収束を示せば，𝐺𝑘 が 𝐾 上で絶対収束かつ一様収束すること
が従う。正整数 𝑁に対して { (𝑚，𝑛) ∈ ℤ2 ∶ max{|𝑚|，|𝑛|} = 𝑁 }の個数を数える。|𝑚| > |𝑛|
のものを数えると，𝑚 = ±𝑁で，𝑛 = −𝑁 + 1，− 𝑁 + 2，…，− 1，0，1，…，𝑁 − 1の
2(2𝑁 − 1)個ある。同様に |𝑛| < |𝑚|のものも 2(2𝑁 − 1)個ある。|𝑚| = |𝑛|のものは，
(𝑁，𝑁)，(𝑁，− 𝑁)，(−𝑁，𝑁)，(−𝑁，− 𝑁)の 4個ある。ゆえに件の集合の個数は 8𝑁個であ
ることが分かった。ゆえに

∑
(𝑚，𝑛)∈ℤ2 ∶

(𝑚，𝑛)≠(0，0)

1
max{|𝑚|，|𝑛|}𝑘 =

∞
∑

𝑁=1

8𝑁
𝑁 𝑘 = 8

∞
∑

𝑁=1

1
𝑁 𝑘−1

であり，いま 𝑘 ≧ 3であるからこの正項級数は収束する。以上で，𝐺𝑘 が ℍ上で絶対収束
かつ広義一様収束することが示された。多項式 𝑚𝑧 + 𝑛 は ℍ 上で常に零でないから，有
理多項式 1/(𝑚𝑧 + 𝑛) は ℍ 上の正則関数であり，𝐺𝑘 の収束先が正則関数であることも分
かる。 証明終　

定理 3.4 　 𝑘 ≧ 3のとき正則関数 𝐺𝑘 ∶ ℍ → ℂはレベル 1荷重 𝑘の弱モジュラー関数で
ある。

証明　元 𝛾 = ( 𝑎 𝑏
𝑐 𝑑 ) ∈ SL2(ℤ)と点 𝑧 ∈ ℍを勝手に取る。𝛾が全単射写像 ℤ2 ∖ {(0，0)} →

ℤ2 ∖ {(0，0)}を誘導することに注意すると，

𝐺𝑘(𝛾 ⋅ 𝑧) = ∑
(𝑚，𝑛)∈ℤ2 ∶

(𝑚，𝑛)≠(0，0)

1
(𝑚(𝛾 ⋅ 𝑧) + 𝑛)𝑘

= ∑
(𝑚，𝑛)∈ℤ2 ∶

(𝑚，𝑛)≠(0，0)

(𝑐𝑧 + 𝑑)𝑘

(𝑚(𝑎𝑧 + 𝑏) + 𝑛(𝑐𝑧 + 𝑑))𝑘 ∵分母を払った

= ∑
(𝑚，𝑛)∈ℤ2 ∶

(𝑚，𝑛)≠(0，0)

(𝑐𝑧 + 𝑑)𝑘

((𝑚𝑎 + 𝑛𝑐)𝑧 + (𝑚𝑏 + 𝑛𝑑))𝑘

= ∑
(𝑚′，𝑛′) ∶

(𝑚，𝑛)∈ℤ2∖{(0，0)}，(𝑚′
𝑛′ )=𝛾(𝑚

𝑛 )

(𝑐𝑧 + 𝑑)𝑘

(𝑚′𝑧 + 𝑛′)𝑘

= (𝑐𝑧 + 𝑑)𝑘 ∑
(𝑚′，𝑛′)∈ℤ2 ∶

(𝑚′，𝑛′)≠(0，0)

1
(𝑚′𝑧 + 𝑛′)𝑘 ∵ 𝛾の全単射性より
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= (𝑐𝑧 + 𝑑)𝑘𝐺𝑘(𝑧)

となり，𝐺𝑘 が (⋆)を満足することが確かめられた。 証明終　

系 3.5　 𝑘が 3以上の奇数のとき ℍ上で 𝐺𝑘(𝑧) = 0である。

証明　定理 3.4より 𝐺𝑘 が荷重 𝑘の弱モジュラー関数であるから，命題 2.2 (1)より 𝐺𝑘 は
ℍ上の零関数である。 証明終　

さらに弱モジュラー関数 𝐺𝑘 はモジュラー形式である。
定理 3.6　 𝑘 ≧ 3のとき 𝐺𝑘 は∞で正則である。つまり 𝐺𝑘 はモジュラー形式である。
この定理の証明のために，ゼータ関数・約数関数・ベルヌーイ数を用いて 𝐺𝑘 の 𝑞 展開

を表示する。
定義 3.7　 (1) 1より大きい実数 𝑠に対して，

𝜁(𝑠) =
∞
∑
𝑛=1

𝑛−𝑠

として関数 𝜁を定め，ゼータ関数と呼ぶ。
(2) 正整数 𝑛と実数 𝑙に対して，

𝜎𝑙(𝑛) = ∑
𝑑∈ℤ ∶

𝑑>0，𝑑∣𝑛

𝑑𝑙

として関数 𝜎𝑙 を定め，約数関数と呼ぶ。
(3) 原点周りの 𝔻∗ 上の正則関数 𝑧/(𝑒𝑧 − 1)のテイラー展開

𝑧
𝑒𝑧 − 1 =

∞
∑
𝑘=0

𝐵𝑘
𝑘! 𝑧𝑘

の係数 𝐵𝑘 をベルヌーイ数と呼ぶ。
補題 3.8 (オイラーの等式)　正の偶数 𝑘に対して，

(3.4) 𝜁(𝑘) = −1
2

(2𝜋𝑖)𝑘𝐵𝑘
𝑘!

が成立する。

証明　三角関数の公式

(3.5) 𝜋 cot(𝜋𝑧) =
∞
∑

𝑛=−∞

1
𝑧 + 𝑛

を用いる1）。(3.5)の左辺に 𝑧を掛けたものを計算すると，𝑧 ∈ ℍのとき

𝜋𝑧 cot(𝜋𝑧) = 𝜋𝑧cos(𝜋𝑧)
sin(𝜋𝑧) ∵ cotの定義

1） 証明は，例えばヘルグロッツの技法と呼ばれるものが [3]の 23章にある。
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= 𝜋𝑧 (𝑒𝜋𝑖𝑧 + 𝑒−𝜋𝑖𝑧)/2
(𝑒𝜋𝑖𝑧 − 𝑒−𝜋𝑖𝑧)/(2𝑖) ∵ cos，sinの定義

= 𝜋𝑖𝑧𝑒2𝜋𝑖𝑧 + 1
𝑒2𝜋𝑖𝑧 − 1

= 𝜋𝑖𝑧 + 2𝜋𝑖𝑧
𝑒2𝜋𝑖𝑧 − 1

= 𝜋𝑖𝑧 +
∞
∑
𝑘=0

𝐵𝑘
𝑘! (2𝜋𝑧)𝑘 ∵ 𝑧 ∈ ℍ なので，命題 2.3 から

𝑒2𝜋𝑖𝑧 ∈ 𝔻∗ であるので
(3.6)

となる。次に (3.5)の右辺に 𝑧を掛けたものを計算すると，

𝑧
∞
∑

𝑛=−∞

1
𝑧 + 𝑛 = 1 + 𝑧(

∞
∑
𝑛=1

1
𝑧 + 𝑛 +

∞
∑
𝑛=1

1
𝑧 − 𝑛)

= 1 + 𝑧
∞
∑
𝑛=1

2𝑧
𝑧2 − 𝑛2 ∵分母を揃えた

= 1 +
∞
∑
𝑛=1

−2𝑧2

𝑛2 − 𝑧2 ∵ 𝑧を総和の中に入れ，符号を調整した

= 1 −
∞
∑
𝑛=1

2𝑧2

𝑛2
1

1 − ( 𝑧
𝑛)2

= 1 −
∞
∑
𝑛=1

2𝑧2

𝑛2

∞
∑
𝑙=0

𝑧2𝑙

𝑛2𝑙 ∵ 1
1 − 𝑧 の原点におけるテイラー展開

= 1 −
∞
∑
𝑙=0

2𝑧2(𝑙+1)
∞
∑
𝑛=1

1
𝑛2(𝑙+1) ∵和を交換した

= 1 −
∞
∑
𝑙=1

2𝑧2𝑙
∞
∑
𝑛=1

1
𝑛2𝑙 ∵添字 𝑙を 1ずらした

= 1 −
∞
∑
𝑙=1

2𝜁(2𝑙)𝑧2𝑙(3.7)

(3.5)より (3.6)と (3.7)が等しく，2以上の偶数 𝑘 = 2𝑙に関する 𝑧𝑘 の係数を比較するこ
とで，目的の等式

𝜁(𝑘) = −1
2

(2𝜋𝑖)𝑘𝐵𝑘
𝑘!

を得られる。 証明終　

補題 3.9　正の偶数 𝑘に対して，

(3.8)
∞
∑

𝑛=−∞

1
(𝑧 + 𝑛)𝑘 = −𝜁(𝑘)2𝑘

𝐵𝑘

∞
∑
𝑛=1

𝑛𝑘𝑞𝑛

が成立する。
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証明　上述の補題と同様に三角関数の公式

(3.9) 𝜋 cot(𝜋𝑧) =
∞
∑

𝑛=−∞

1
𝑧 + 𝑛

を用いる。(3.9)の左辺を書き直すと，

𝜋 cot(𝜋𝑧) = 𝜋cos(𝜋𝑧)
sin(𝜋𝑧) ∵ cotの定義

= 𝜋 (𝑒𝜋𝑖𝑧 + 𝑒−𝜋𝑖𝑧)/2
(𝑒𝜋𝑖𝑧 − 𝑒−𝜋𝑖𝑧)/(2𝑖) ∵ cos，sinの定義

= 𝜋𝑖𝑒
2𝜋𝑖𝑧 + 1

𝑒2𝜋𝑖𝑧 − 1
= 𝜋𝑖 + 𝜋𝑖 2

𝑞 − 1 ∵ 𝑞 = 𝑒2𝜋𝑖𝑧 と置いているので

= 𝜋𝑖 − 2𝜋𝑖 1
1 − 𝑞

= 𝜋𝑖 − 2𝜋𝑖
∞
∑
𝑛=0

𝑞𝑛 ∵ 1
1 − 𝑞 の原点におけるテーラー展開

となるので，𝑛 ≧ 1のとき 𝑑𝑘−1

𝑑 𝑧𝑘−1 𝑞𝑛 = (2𝜋𝑖𝑛)𝑘−1𝑞𝑛 であることに注意して，(3.9)の両辺を
𝑧について (𝑘 − 1)階微分すると，

−(2𝜋𝑖)𝑘
∞
∑
𝑛=1

𝑛𝑘−1𝑞𝑛 = (−1)𝑘−1(𝑘 − 1)!
∞
∑

𝑛=−∞

1
(𝑧 + 𝑛)𝑘

となり，両辺を (𝑘 − 1)!で割ると，いま 𝑘が偶数であるから (−1)𝑘−1 = −1なので，
∞
∑

𝑛=−∞

1
(𝑧 + 𝑛)𝑘 = (2𝜋𝑖)𝑘

(𝑘 − 1)!

∞
∑
𝑛=1

𝑛𝑘−1𝑞𝑛

となる。また (3.4)から
(2𝜋𝑖)𝑘

(𝑘 − 1)! = −𝜁(𝑘)2𝑘
𝐵𝑘

であるから，目的の等式
∞
∑

𝑛=−∞

1
(𝑧 + 𝑛)𝑘 = −𝜁(𝑘)2𝑘

𝐵𝑘

∞
∑
𝑛=1

𝑛𝑘−1𝑞𝑛

を得られる。 証明終　

定理 3.10　 4以上の偶数 𝑘に対して，𝐺𝑘 の 𝑞展開が

(3.10) 𝐺𝑘(𝑧) = 2𝜁(𝑘)(1 − 2𝑘
𝐵𝑘

∞
∑
𝑛=1

𝜎𝑘−1(𝑛)𝑞𝑛)

と表される。
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証明　 𝐺𝑘(𝑧)を計算していくと，

𝐺𝑘(𝑧) = ∑
(𝑚，𝑛)∈ℤ2 ∶

(𝑚，𝑛)≠(0，0)

1
(𝑚𝑧 + 𝑛)𝑘

=
∞
∑
𝑛=1

1
𝑛𝑘 +

∞
∑
𝑛=1

1
(−𝑛)𝑘

⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚 = 0 の項

+
∞
∑

𝑚=1
( 1

(𝑚𝑧)𝑘 +
∞
∑
𝑛=1

1
(𝑚𝑧 + 𝑛)𝑘 +

∞
∑
𝑛=1

1
(𝑚𝑧 − 𝑛)𝑘 )

+
∞
∑

𝑚=1
( 1

(−𝑚𝑧)𝑘 +
∞
∑
𝑛=1

1
(−𝑚𝑧 + 𝑛)𝑘 +

∞
∑
𝑛=1

1
(−𝑚𝑧 − 𝑛)𝑘 )

=
∞
∑
𝑛=1

1
𝑛𝑘 +

∞
∑
𝑛=1

1
𝑛𝑘

+
∞
∑

𝑚=1
( 1

(𝑚𝑧)𝑘 +
∞
∑
𝑛=1

1
(𝑚𝑧 + 𝑛)𝑘 +

∞
∑
𝑛=1

1
(𝑚𝑧 − 𝑛)𝑘 )

+
∞
∑

𝑚=1
( 1

(𝑚𝑧)𝑘 +
∞
∑
𝑛=1

1
(𝑚𝑧 − 𝑛)𝑘 +

∞
∑
𝑛=1

1
(𝑚𝑧 + 𝑛)𝑘 ) ∵ 𝑘が偶数なので

=2𝜁(𝑘) + 2
∞
∑

𝑚=1

∞
∑

𝑛=−∞

1
(𝑚𝑧 + 𝑛)𝑘

=2𝜁(𝑘) + 2
∞
∑

𝑚=1
(−𝜁(𝑘)2𝑘

𝐵𝑘

∞
∑
𝑛=1

𝑛𝑘−1(𝑒2𝜋𝑖𝑚𝑧)𝑛) ∵ (3.8)を用いた

=2𝜁(𝑘)(1 − 2𝑘
𝐵𝑘

∞
∑

𝑚=1

∞
∑
𝑛=1

𝑛𝑘−1𝑞𝑚𝑛) ∵ 𝑞𝑚𝑛 = (𝑒2𝜋𝑖𝑚𝑧)𝑛

=2𝜁(𝑘)(1 − 2𝑘
𝐵𝑘

∞
∑
𝑑=1

∑
𝑛∈ℤ ∶

𝑛>0，𝑛∣𝑑

𝑛𝑘−1𝑞𝑑) ∵ 𝑑 = 𝑚𝑛と置いた

=2𝜁(𝑘)(1 − 2𝑘
𝐵𝑘

∞
∑
𝑑=1

𝜎𝑘−1(𝑑)𝑞𝑑) ∵約数関数の定義

=2𝜁(𝑘)(1 − 2𝑘
𝐵𝑘

∞
∑
𝑛=1

𝜎𝑘−1(𝑛)𝑞𝑛)

と計算でき，これが目的の等式であった。 証明終　

定理 3.6の証明　 𝑘 が奇数のときは 𝐺𝑘 が零関数であるので明らかである。𝑘 が偶数のと
き (3.10)から

𝐺̃𝑘(𝑞) = 2𝜁(𝑘)(1 − 2𝑘
𝐵𝑘

∞
∑
𝑛=1

𝜎𝑘−1(𝑛)𝑞𝑛)

が成立するので，lim𝑞→0 𝐺̃𝑘(𝑞) = 2𝜁(𝑘)である。これは 𝐺̃𝑘(𝑞)が原点で正則であることを
意味し，したがって 𝐺𝑘 が∞で正則であることが従う。 証明終　
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定義 3.11　 3以上の整数 𝑘に対して，ℍ ∪ {∞}上の正則関数 𝐸𝑘 を

𝐸𝑘(𝑧) = 𝐺𝑘(𝑧)
2𝜁(𝑘) = 1 − 2𝑘

𝐵𝑘

∞
∑
𝑛=1

𝜎𝑘−1(𝑛)𝑞𝑛

で定め，正規化アイゼンシュタイン級数と呼ぶ。
ベルヌーイ数（と約数関数）を計算できれば，𝐸𝑘 を明示的に書き下すことができるの

で，ここでベルヌーイ数の漸化式を述べておく。
命題 3.12　 𝐵0 = 1，かつ 𝑑 ≧ 1のとき

𝐵𝑑 = − 1
𝑑 + 1

𝑑−1
∑
𝑘=0

(𝑑 + 1
𝑘 )𝐵𝑘

が成り立つ。

証明　 𝑒𝑧 を原点周りでテイラー展開すると

𝑒𝑧 =
∞
∑
𝑘=0

1
𝑘!𝑧

𝑘

であるから，
𝑒𝑧 − 1

𝑧 =
∞
∑
𝑘=0

1
(𝑘 + 1)!𝑧

𝑘

となる。したがって

1 = 𝑧
𝑒𝑧 − 1

𝑒𝑧 − 1
𝑧 = (

∞
∑
𝑘=0

𝐵𝑘
𝑘! 𝑧𝑘)(

∞
∑
𝑘=0

1
(𝑘 + 1)!𝑧

𝑘) =
∞
∑
𝑑=0

(
𝑑

∑
𝑘=0

𝐵𝑘
𝑘! (𝑑 − 𝑘 + 1)!)𝑧𝑑

となるので，係数比較をすることで，𝐵0 = 1かつ

(3.11)
𝑑

∑
𝑘=0

𝐵𝑘
𝑘! (𝑑 − 𝑘 + 1)! = 0

が分かる。(3.11)を 𝐵𝑑 について解くことで，

𝐵𝑑 = −
𝑑−1
∑
𝑘=0

𝑑!
𝑘! (𝑑 − 𝑘 + 1)!𝐵𝑘

= − 1
𝑑 + 1

𝑑−1
∑
𝑘=0

(𝑑 + 1)!
𝑘! (𝑑 − 𝑘 + 1)!𝐵𝑘 ∵ 𝑑 + 1を挟み込んだ

= − 1
𝑑 + 1

𝑑−1
∑
𝑘=0

(𝑑 + 1
𝑘 )𝐵𝑘 ∵二項係数の定義

と計算でき，目的の漸化式を得られる。 証明終　
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いくつかベルヌーイ数を計算すると，

𝐵1 = −1
2𝐵0 = −1

2，

𝐵2 = −1
3(𝐵0 + 3𝐵1) = −1

3(1 − 3
2) = 1

6，

𝐵3 = −1
4(𝐵0 + 4𝐵1 + 6𝐵2) = −1

4(1 − 2 + 1) = 0，

𝐵4 = −1
5(𝐵0 + 5𝐵1 + 10𝐵2 + 10𝐵3) = −1

5(1 − 5
2 + 5

3 + 0) = − 1
30，

𝐵5 = ⋯ = 0，

𝐵6 = ⋯ = 1
42

などとなる。したがって，正規化アイゼンシュタイン級数は

𝐸4(𝑧) = 1 − 8(−30)
∞
∑
𝑛=1

𝜎3(𝑛)𝑞𝑛 = 1 − 240(𝑞 + 9𝑞2 + 28𝑞3 + ⋯)，

𝐸6(𝑧) = 1 − 12 ⋅ 42
∞
∑
𝑛=1

𝜎5(𝑛)𝑞𝑛 = 1 − 504(𝑞 + 33𝑞2 + 244𝑞3 + ⋯)

などとなる。ここで正則関数 𝐸3
4 − 𝐸2

6 を考えると，これは命題 2.7 と命題 2.8 から荷重
12のモジュラー形式で，上の計算より

(𝐸4(𝑧))3 − (𝐸6(𝑧))2 = 1728𝑞 + 𝜊(𝑞)

となるので，荷重 12の尖点形式であることが分かる。尖点形式 Δを (𝐸3
4 − 𝐸2

6)/1728で
定め，ラマヌジャンのデルタと呼ぶ。また Δのフーリエ係数を (𝜏(𝑛))∞

𝑛=0 で表し，ラマヌ
ジャンのタウ関数と呼ぶ。具体的には

𝜏(0) = 0， 𝜏(1) = 1， 𝜏(2) = −24， 𝜏(3) = 252，…

と計算できる。ラマヌジャンのタウ関数については，ラマヌジャンによる有名な予想が
ある。
予想 3.13 (ラマヌジャン予想)　ラマヌジャンのタウ関数に対して次が成立する。
(1) 勝手な非負整数 𝑛，𝑚に対して，𝑛と 𝑚が互いに素であるならば

𝜏(𝑛𝑚) = 𝜏(𝑛)𝜏(𝑚)

が成立する。
(2) 𝑝を素数，𝑟を正整数とするとき

𝜏(𝑝𝑟+1) = 𝜏(𝑝)𝜏(𝑝𝑟) − 𝑝11𝜏(𝑝𝑟−1)
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が成立する。
予想 3.13は，以降で扱うヘッケ作用素を用いることで証明される。

4 ヘッケ作用素

ヘッケ作用素を定義するための準備を行なっていく。正整数 𝑛に対して集合

{ ( 𝑎 𝑏
𝑐 𝑑 ) ∶ 𝑎，𝑏，𝑐，𝑑 ∈ ℤ，𝑎𝑑 − 𝑏𝑐 = 𝑛 }

を𝐌𝑛 と置き，行列の左乗算によって SL2(ℤ)の𝐌𝑛 への左群作用を定めておく。
補題 4.1 　レベル 1 荷重 𝑘 の弱モジュラー関数 𝑓 と正整数 𝑛 を考える。勝手な行列
( 𝑎 𝑏

𝑐 𝑑 ) ∈ 𝐌𝑛 と軌道の元 ( ̃𝑎 𝑏̃
̃𝑐 ̃𝑑 ) ∈ SL2(ℤ) ⋅ ( 𝑎 𝑏

𝑐 𝑑 )に対して

(4.1) (𝑐𝑧 + 𝑑)−𝑘𝑓(𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑) = ( ̃𝑐𝑧 + ̃𝑑)−𝑘𝑓( ̃𝑎𝑧 + 𝑏̃

̃𝑐𝑧 + ̃𝑑
)

が成立する。

証明　軌道 SL2(ℤ) ⋅ ( 𝑎 𝑏
𝑐 𝑑 )の元は，行列 ( 𝑎′ 𝑏′

𝑐′ 𝑑′ ) ∈ SL2(ℤ)を用いて

(
𝑎′ 𝑏′

𝑐′ 𝑑′
) (

𝑎 𝑏
𝑐 𝑑

) = (
𝑎𝑎′ + 𝑏′𝑐 𝑎′𝑏 + 𝑏′𝑑
𝑎𝑐′ + 𝑐𝑑′ 𝑏𝑐′ + 𝑑𝑑′

)

と表される。すると (4.1)の右辺は

(𝑎𝑐′𝑧 + 𝑐𝑑′)−𝑘𝑓(( 𝑎′ 𝑏′
𝑐′ 𝑑′ )( 𝑎 𝑏

𝑐 𝑑 ) ⋅ 𝑧)

= (𝑎𝑐′𝑧 + 𝑐𝑑′)−𝑘(𝑐′( 𝑎 𝑏
𝑐 𝑑 ) ⋅ 𝑧 + 𝑑′)𝑘𝑓(( 𝑎 𝑏

𝑐 𝑑 ) ⋅ 𝑧) ∵ (⋆)より

= (𝑎𝑐′𝑧 + 𝑐𝑑′)−𝑘(𝑐′ 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑 + 𝑑′)

𝑘
𝑓(𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑) ∵作用の定義

= (𝑎𝑐′𝑧 + 𝑐𝑑′)−𝑘((𝑎𝑐′ + 𝑐𝑑′)𝑧 + (𝑏𝑐′ + 𝑑𝑑′)
𝑐𝑧 + 𝑑 )

𝑘
𝑓(𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑)

= (𝑐𝑧 + 𝑑)−𝑘𝑓(𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑)

と計算でき，(4.1)の左辺と等しいことが分かる。 証明終　

補題 4.1から，レベル 1荷重 𝑘の弱モジュラー関数 𝑓と軌道 SL2(ℤ)⋅( 𝑎 𝑏
𝑐 𝑑 ) ∈ SL2(ℤ)\𝐌𝑛

に対して
(𝑐𝑧 + 𝑑)−𝑘𝑓(𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑)

を軌道の代表元の取り方に依らずに定義できる。
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定義 4.2 　レベル 1荷重 𝑘の弱モジュラー関数 𝑓と正整数 𝑛に対して，ℍ上の有理型関
数 𝑇𝑛𝑓を，

𝑇𝑛𝑓(𝑧) = 𝑛𝑘−1 ∑
SL2(ℤ)⋅( 𝑎 𝑏

𝑐 𝑑)∈SL2(ℤ)\𝐌𝑛

(𝑐𝑧 + 𝑑)−𝑘𝑓(𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑)

で定める。レベル 1荷重 𝑘の弱モジュラー関数の集合から ℍ上の有理型関数への写像 𝑇𝑛

をヘッケ作用素と呼ぶ。
まずヘッケ作用素によって弱モジュラー関数が弱モジュラー関数に写ることを見る。

命題 4.3 　 𝑓がレベル 1荷重 𝑘の弱モジュラー関数であるとき，𝑇𝑛𝑓も荷重 𝑘の弱モジュ
ラー関数である。

証明　行列 𝛾 = ( 𝑎′ 𝑏′
𝑐′ 𝑑′ ) ∈ SL2(ℤ)を勝手に取る。𝛾の右乗算が SL2(ℤ)\𝐌𝑛 上の置換を引

き起こすことに注意すると，

𝑇𝑛𝑓(𝛾 ⋅ 𝑧)

= 𝑛𝑘−1 ∑
SL2(ℤ)⋅( 𝑎 𝑏

𝑐 𝑑)∈SL2(ℤ)\𝐌𝑛

(𝑐(𝛾 ⋅ 𝑧) + 𝑑)−𝑘𝑓(𝑎(𝛾 ⋅ 𝑧) + 𝑏
𝑐(𝛾 ⋅ 𝑧) + 𝑑)

= 𝑛𝑘−1 ∑
SL2(ℤ)⋅( 𝑎 𝑏

𝑐 𝑑)∈SL2(ℤ)\𝐌𝑛

(𝑐𝑎′𝑧 + 𝑏′

𝑐′𝑧 + 𝑑′ + 𝑑)
−𝑘

𝑓(( 𝑎 𝑏
𝑐 𝑑 )( 𝑎′ 𝑏′

𝑐′ 𝑑′ ) ⋅ 𝑧) ∵作用の定義

= 𝑛𝑘−1 ∑
SL2(ℤ)⋅( 𝑎 𝑏

𝑐 𝑑)∈SL2(ℤ)\𝐌𝑛

((𝑎′𝑐 + 𝑐′𝑑)𝑧 + (𝑏′𝑐 + 𝑑𝑑′)
𝑐′𝑧 + 𝑑′ )

−𝑘
𝑓(( 𝑎𝑎′+𝑏𝑐′ 𝑎𝑏′+𝑏𝑑′

𝑎′𝑐+𝑐′𝑑 𝑏′𝑐+𝑑𝑑′ ) ⋅ 𝑧)

= (𝑐′𝑧 + 𝑑′)𝑘𝑛𝑘−1 ∑
SL2(ℤ)⋅( 𝑎 𝑏

𝑐 𝑑)∈SL2(ℤ)\𝐌𝑛

((𝑎′𝑐 + 𝑐′𝑑)𝑧 + (𝑏′𝑐 + 𝑑𝑑′))−𝑘𝑓(( 𝑎𝑎′+𝑏𝑐′ 𝑎𝑏′+𝑏𝑑′

𝑎′𝑐+𝑐′𝑑 𝑏′𝑐+𝑑𝑑′ ) ⋅ 𝑧)

= (𝑐′𝑧 + 𝑑′)𝑘𝑛𝑘−1 ∑
SL2(ℤ)⋅( 𝑎 𝑏

𝑐 𝑑)∈SL2(ℤ)\𝐌𝑛

(𝑐(𝛾 ⋅ 𝑧) + 𝑑)−𝑘𝑓(𝑎(𝛾 ⋅ 𝑧) + 𝑏
𝑐(𝛾 ⋅ 𝑧) + 𝑑)

∵ 𝛾が SL2(ℤ)\𝑀𝑛 上の
置換なので

= (𝑐′𝑧 + 𝑑′)𝑘𝑇𝑛𝑓(𝑧)

と計算でき，𝑇𝑛𝑓が (⋆)を満足することが確かめられる。ゆえに 𝑇𝑛𝑓は荷重 𝑘の弱モジュ
ラー関数である。 証明終　

ここで SL2(ℤ)\𝐌𝑛 の完全代表系としてエルミート標準形を取れることを見ておく。
命題 4.4　行列 ( 𝑎 𝑏

𝑐 𝑑 ) ∈ 𝐌𝑛 に対して，𝛾( 𝑎 𝑏
𝑐 𝑑 )がエルミート標準形，すなわち

𝛾 (
𝑎 𝑏
𝑐 𝑑

) = (
̃𝑎 𝑏̃

0 ̃𝑑
)， ̃𝑎 > 0， ̃𝑎 ̃𝑑 = 𝑛，0 ≦ 𝑏̃ < ̃𝑑

を満足する行列 𝛾 ∈ SL2(ℤ)が存在する。
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証明　行列 ( 𝑎 𝑏
𝑐 𝑑 ) が非特異であるから，定理 A.2 より 𝛾( 𝑎 𝑏

𝑐 𝑑 ) がエルミート標準形となる
ようなユニモジュラー行列 𝛾 ∈ GL2(ℤ)を取れる。エルミート標準形の行列式は正で，か
つ ( 𝑎 𝑏

𝑐 𝑑 )の行列式も正であるから，det(𝛾) = 1，すなわち 𝛾 ∈ SL2(ℤ)であることが従う。
証明終　

系 4.5　レベル 1荷重 𝑘の弱モジュラー関数 𝑓と正整数 𝑛に対して，

(4.2) 𝑇𝑛𝑓(𝑧) = 𝑛𝑘−1 ∑
𝑎，𝑑∈ℤ ∶

𝑎>0，𝑎𝑑=𝑛

𝑑−1
∑
𝑏=0

𝑑−𝑘𝑓(𝑎𝑧 + 𝑏
𝑑 )

と表せる。

証明　命題 4.4 とエルミート標準形の一意性から SL2(ℤ)\𝐌𝑛 の完全代表系として
{ ( 𝑎 𝑏

0 𝑑 ) ∈ 𝐌𝑛 ∶ 𝑎 > 0，0 ≦ 𝑏 < 𝑑 }を取れるので。 証明終　

(4.2) によるヘッケ作用素の表示を用いることで，モジュラー関数がモジュラー関数に
写ることを示せる。
定理 4.6　 𝑓をレベル 1荷重 𝑘のモジュラー関数とし，その 𝑞展開を 𝑓(𝑧) = ∑𝑚∈ℤ 𝛼(𝑚)𝑞𝑚

とする。このとき

(4.3) 𝑇𝑛𝑓(𝑧) = ∑
𝑚∈ℤ

𝛾(𝑚)𝑞𝑚， 𝛾(𝑚) = ∑
𝑎∈ℤ ∶ 𝑎>0，
𝑎∣gcd(𝑚，𝑛)

𝑎𝑘−1𝛼(𝑚𝑛
𝑎2 )

が成立する。

証明　 (4.2)を用いて計算を行うと，

𝑇𝑛𝑓(𝑧) = 𝑛𝑘−1 ∑
𝑎，𝑑∈ℤ ∶

𝑎>0，𝑎𝑑=𝑛

𝑑−1
∑
𝑏=0

𝑑−𝑘𝑓(𝑎𝑧 + 𝑏
𝑑 ) ∵ (4.2)より

= 𝑛𝑘−1 ∑
𝑎，𝑑∈ℤ ∶

𝑎>0，𝑎𝑑=𝑛

𝑑−1
∑
𝑏=0

𝑑−𝑘 ∑
𝑚∈ℤ

𝛼(𝑚) exp (2𝜋𝑖𝑎𝑧 + 𝑏
𝑑 𝑚) ∵ 𝑓の 𝑞展開

= 𝑛𝑘−1 ∑
𝑚∈ℤ

∑
𝑎，𝑑∈ℤ ∶

𝑎>0，𝑎𝑑=𝑛

𝑑−𝑘𝛼(𝑚) exp (2𝜋𝑖𝑎𝑧
𝑑 𝑚)

𝑑−1
∑
𝑏=0

exp (2𝜋𝑖𝑏𝑑𝑚)(4.4)

となる。ここで，整数 𝑑，𝑚に対して ∑𝑑−1
𝑏=0 exp (2𝜋𝑖 𝑏

𝑑𝑚)を計算すると，

𝑑−1
∑
𝑏=0

exp (2𝜋𝑖𝑏𝑑𝑚)(4.5)
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= {
𝑑 𝑑 ∣ 𝑚のとき（∵常に exp (2𝜋𝑖 𝑏

𝑑𝑚) = 1なので）
1−exp(2𝜋𝑖(𝑚/𝑑))𝑑

1−exp(2𝜋𝑖(𝑚/𝑑)) = 0 𝑑 ∤ 𝑚のとき（∵等比数列の和）

となる。(4.4)の計算を続けると，

𝑇𝑛𝑓(𝑧) = 𝑛𝑘−1 ∑
𝑚∈ℤ

∑
𝑎，𝑑∈ℤ ∶

𝑎>0，𝑎𝑑=𝑛

𝑑−𝑘𝛼(𝑚) exp (2𝜋𝑖𝑎𝑧
𝑑 𝑚)

𝑑−1
∑
𝑏=0

exp (2𝜋𝑖𝑏𝑑𝑚) ∵ (4.4)より

= 𝑛𝑘−1 ∑
𝑚∈ℤ

∑
𝑎，𝑑∈ℤ ∶

𝑎>0，𝑎𝑑=𝑛，𝑑∣𝑚

𝑑−𝑘+1𝛼(𝑚) exp (2𝜋𝑖𝑎𝑧𝑚
𝑑 ) ∵ (4.5)より

= ∑
𝑚∈ℤ

∑
𝑑∈ℤ ∶

𝑑>0，𝑑∣𝑛，𝑑∣𝑚

(𝑛
𝑑)

𝑘−1
𝛼(𝑚) exp (2𝜋𝑖𝑧𝑚𝑛

𝑑2 ) ∵ 𝑎 = 𝑛/𝑑

= ∑
𝑚∈ℤ

∑
𝑑∈ℤ ∶

𝑑>0，𝑑∣gcd(𝑚，𝑛)

(𝑛
𝑑)

𝑘−1
𝛼(𝑛𝑑

𝑛
𝑚
𝑑 )𝑞 𝑚

𝑑
𝑛
𝑑(4.6)

となる。ここで関係 (𝑚，𝑑) ↦ (𝑚/𝑑，𝑛/𝑑)によって全単射写像

(4.7) {(𝑚，𝑑) ∶ 𝑚，𝑑 ∈ ℤ，𝑑 > 0，𝑑 ∣ gcd(𝑚，𝑛)} → {(𝑚′，𝑎) ∶ 𝑚′，𝑑 ∈ ℤ，𝑎 > 0，𝑎 ∣ 𝑛}

を得られるので，(4.6)の計算を続けて，

𝑇𝑛𝑓(𝑧) = ∑
𝑚∈ℤ

∑
𝑑∈ℤ ∶

𝑑>0，𝑑∣gcd(𝑚，𝑛)

(𝑛
𝑑)

𝑘−1
𝛼(𝑛𝑑

𝑛
𝑚
𝑑 )𝑞 𝑚

𝑑
𝑛
𝑑 ∵ (4.6)

= ∑
𝑚′∈ℤ

∑
𝑎∈ℤ ∶

𝑎>0，𝑎∣𝑛

𝑎𝑘−1𝛼(𝑛𝑚′

𝑎 )𝑞𝑚′𝑎 ∵ (4.7)

= ∑
𝑚∈ℤ ( ∑

𝑎∈ℤ ∶
𝑎>0，𝑎∣gcd(𝑚，𝑛)

𝑎𝑘−1𝛼(𝑚𝑛
𝑎2 ))𝑞𝑚

と計算でき，𝑇𝑛𝑓を目的の形で表示できた。 証明終　

系 4.7 　 𝑓 がレベル 1 荷重 𝑘 のモジュラー関数のとき，𝑇𝑛𝑓 もレベル 1 荷重 𝑘 のモジュ
ラー関数である。さらに 𝑓がモジュラー形式ならば，𝑇𝑛𝑓もモジュラー形式である。

証明　 𝑎 ∣ 𝑛なる正整数 𝑎に対して 𝑛/(𝑎2)は高々有界であるから，𝑚 ≪ 0のとき (4.3)に
おける 𝛾(𝑚) は零である。ゆえに 𝑇𝑛𝑓 は ∞ で有理型で，モジュラー関数であることが従
う。また 𝑓がモジュラー形式であれば，負の整数 𝑚に対して常に 𝛾(𝑚) = 0であることが
分かるので，𝑇𝑛𝑓は∞で正則で，モジュラー形式であることが従う。 証明終　
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A 整数係数行列のエルミート標準形

整数係数の非特異正方行列に対してエルミート標準形が存在することを，2 次の場合に
限定して取り扱う。
定義 A.1 (非特異正方行列のエルミート標準形)　 𝐴を整数係数の非特異 2次行列とする。
ユニモジュラー行列 𝛾 ∈ GL2(ℤ)によって

𝛾 ⋅ 𝐴 = (
ℎ11 ℎ12

0 ℎ22
)， ℎ11，ℎ22 > 0かつ 0 ≦ ℎ12 < ℎ22

と表せるとき，この上三角行列を 𝐴のエルミート標準形と呼ぶ。
エルミート標準形を誘導するにあたって，
・一行目と二行目を交換する行列 ( 0 1

1 0 )
・一行目を−1倍する行列 ( −1 0

0 1 )
・二行目を−1倍する行列 ( 1 0

0 −1 )
・一行目を 𝑚倍して二行目に足す行列 ( 1 0

𝑚 1 )
・二行目を 𝑚倍して一行目に足す行列 ( 1 𝑚

0 1 )
が基本となるユニモジュラー行列で，これら行列の左乗算によって行列の変形を行う。
定理 A.2 　整数係数の非特異 2次行列 𝐴 = ( 𝑎 𝑏

𝑐 𝑑 )に対してエルミート標準形は一意的に
存在する。

証明　存在性と一意性を分けて証明する。
存在性　　 𝑎 = 0または 𝑐 = 0なら，行の入れ替えを行うことで 𝑐 = 0と考えて良く，

すると非特異性から 𝑎 ≠ 0 かつ 𝑑 ≠ 0 である。さらに各行を適当に −1 倍することで
𝑎 > 0かつ 𝑑 > 0として良い。𝑏を 𝑑で割ることで

𝑏 = 𝑞𝑑 + 𝑏′， 𝑞，𝑏′ ∈ ℤ，0 ≦ 𝑏′ < 𝑑

を得られる。を満足する 𝑞，𝑏′ を取り，−𝑞 倍した二行目を一行目に足して 𝐴 のエルミー
ト標準形 ( 𝑎 𝑏′

0 𝑑 ) を得る。𝑎，𝑐 が共に零でない場合は，以下のようにユークリッドの互除法
を用いて上述の議論に帰着させる。必要なら一行目と二行目を入れ替えて，0 < |𝑎| ≦ |𝑐|
として良い。𝑐を 𝑎で割って，

𝑐 = 𝑞𝑎 + 𝑐′， 𝑞，𝑐′ ∈ ℤ，0 ≦ 𝑐′ < |𝑎|

を満足する 𝑞，𝑐′ を取り，−𝑞 倍した一行目を二行目に足して，行列 ( 𝑎 𝑏
𝑐′ 𝑑−𝑞𝑏 ) を得る。
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𝑐′ ≠ 0であれば，0 ≦ |𝑐′| < |𝑎|であるから，行を交換して再度同じ議論を繰り返すこと
で，𝑐′ = 0としてよく，証明の最初の議論に帰着された。
一意性　　二つの 𝐴のエルミート標準形

𝛾 ⋅ 𝐴 = (
ℎ11 ℎ12

0 ℎ22
)， 𝛾′ ⋅ 𝐴 = (

ℎ11′ ℎ′
12

0 ℎ′
22

)， 𝛾，𝛾′ ∈ GL2(ℤ)

があるとすると，𝛾′ ⋅ 𝛾−1 = ( 𝑎 𝑏
𝑐 𝑑 )と書けば

(
ℎ′

11 ℎ′
12

0 ℎ′
22

) = (
𝑎 𝑏
𝑐 𝑑

) (
ℎ11 ℎ12

0 ℎ22
)

となる。これから 𝛾′ ⋅ 𝛾−1 が単位行列であることを示す。ℎ11𝑐 = 0かつ ℎ11 ≠ 0であるか
ら，𝑐 = 0である。すると 𝛾′⋅𝛾−1 がユニモジュラーであるから，𝑎𝑑 = 1または 𝑎𝑑 = −1
である。ℎ11𝑎 = ℎ′

11 かつ ℎ11，ℎ′
11 > 0であるから，𝑎 > 0である。同様に ℎ22𝑑 = ℎ′

22 か
つ ℎ22，ℎ′

22 > 0であるから，𝑑 > 0である。したがって 𝑎 = 𝑑 = 1であることが分かる。
0 ≦ ℎ′

12 = ℎ12 + 𝑏ℎ22 かつ 0 ≦ ℎ12 < ℎ22 であるから，𝑏 ≧ 0でなければならない。また
ℎ′

22 = ℎ22 であるから，0 ≦ ℎ′
12 < ℎ′

22 であることと合わせて 𝑏 = 0であることが分かる。
ゆえに 𝛾′ ⋅ 𝛾−1 が単位行列で，二つのエルミート標準形が等しいことが従う。 証明終　
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